
Page 1 of 50

M 365 Excel Class Video 17: Fundamentals of DAX in Excel & Power BI.

Table of Contents
What is DAX? ..3

Data Model Components ..3

Star Schema Data Model ...4

Columnar Database...5

Types of DAX Formulas ...5

DAX User Interface in Excel Power Pivot..6

DAX User Interface in Power BI Desktop..7

DAX Fundamentals..8

Calculated Columns ...8

RELATED DAX function ..8

Row Context ...8

Measures ..9

Filter Context ..10

COUNTROWS DAX Function is a Super Charged COUNTIFS Function ..12

Implicit Measures vs. Explicit Measures ...12

Case Where Implicit Measures Might Be OK ..13

SUMX and Iterator Functions ..14

Row Context in Iterator functions..14

Two Step and One Step Measures ...15

Characteristics of two methods: ..15

Understanding How Filter Context and Row Context Work Together ...16

Gross Profit ...16

Using Measures in Other DAX Formulas ..17

DIVIDE Function & % Gross Profit ..18

CALCULATE Function and Filter Context ..18

ALL Function ...19

VALUES Function ...19

ALL and VALUES functions compared ..19

Example of ALL and VALUES in CONCATENATEX DAX Function ..19

ALLSELECTED Function to get a Filtered Grand Total..20

ALLEXCEPT Function ..20

FILTER and CALCULATETABLE functions ...20

Examples of CALCULATE to Change Filter Context for Various % of Total Calculations ...21

Time Intelligence Functions such as SAMEPERIODLASTYEAR..22

IF function ...23

HASONEVALUE function ..23

Page 2 of 50

VAR & RETURN to define Variables in DAX Formula ...23

YOY % Change DAX Formula and Report from above formula ..23

YOY % Change Formula For Partial Year Data:..24

Boolean Filters in CALCULATE ..24

Overwrite Operation in CALCULATE function ...25

Boolean Filter Behinds Scenes Runs as a FILTER and ALL Function Construction ..25

KEEPFILTERS Function to Perform AND Logical Test Rather Then An Overwrite Operation in CALCULATE26

FILTER and VALUES Functions to SIMULATE KEEPFILTER Result..26

Logical Operators in DAX: ..27

AND Logical Test with Two Filter Arguments in CALCULATE function ...28

OR Logical Test in CALCULATE function..28

KEEPFILTERS to Create Filtered Reports ...29

OR Logical Test for List of Items using IN Operator in CALCULATE function ..29

NOT Logical Test in CALCULATE Function to Filter to Items NOT IN List ..29

CALCULATE to perform Context Transition ..30

When Context Transition Causes Trouble: Context Transition for a Measure Over a Table with Duplicate Records32

Rule for When to Use Context Transition:..33

12 Month Moving Average DAX Formula and Report...33

Moving 12 Month Average Formula For Partial Year Data: ..34

Complex Filter ...34

CROSSJOIN DAX Table Function ...34

Star Schema Data Model and Expanded Table Diagram: ..36

Table Filter To Go Backwards Across Many-To-One Relationship ...37

DAX Formula Evaluation Context Summary ...38

Calculating Averages at Different Grains and with Different Formulas ...38

Average Transactional / Daily / Monthly Sales By Product DAX Formulas:..40

Unmatched Items in a Relationship ...41

Date Table with the DAX functions GENERATE and ROW ...42

Using the DISTINCTCOUNT and DIVIDE DAX Functions for faster calculating average ...44

Cardinality of Tables in Iterator Functions ...44

Approximate Match Lookup with DAX: ..45

ADDCOLUMNS and SELECTCOLUMNS DAX Table Functions ...46

DAX Studio ..46

Using DAX with Existing Connections feature to extract Data From Data Model into Worksheet48

Page 3 of 50

What is DAX?

• DAX = Data Analysis eXpressions, where eXpression is a synonym for formula.

• DAX Formulas are created in the Data Model in Power Pivot and Power BI.

• DAX formulas are programmed to work efficiently with big data and can significantly reduce the number of

intermediate steps in complex calculations by creating columns and tables within formulas at the correct grain.

• DAX includes many functions that are almost identical to Excel worksheet functions, such as SUM, AVERAGE, and

EOMONTH, as well as functions that are unique to DAX, such as RELATED, SUMX, and CALCULATE.

• 4 Main Advantages of DAX Formulas:

1. Measures are reusable, preformatted, metric-in-nature, aggregate formulas that you can drag and drop

into Excel PivotTables/Charts and Power BI Visuals: create, format, then use over and over.

2. DAX formulas are specifically designed to work with the compressed data from the Data Model

columnar database to calculate much more quickly over big data than many other tools.

3. There are many more functions available in the DAX formula language than there are in a Standard

PivotTable; there are more than 250 DAX functions.

4. The DAX formula language makes it easy and efficient to use tables with different granularities within a

formula, which can reduce the number of intermediate steps in a complex calculation.

Data Model Components

• A Data Model is the source data and metrics for reporting and visuals in Excel Power Pivot and Power BI.

• Data Model Components:

1. In-RAM Columnar Database:

▪ When you load Power Query generated tables to the Data Model, the data is compressed and

stored in an efficient structure with a small file size in the behind-the-scenes columnar database.

The columnar database works with DAX formulas to efficiently work with big data.

2. Relationships Between Related Tables:

▪ Relationships are created between related tables and have these characteristics:

1. They can replace worksheet lookup formulas.

2. They allow you to drag & drop fields from multiple tables into Excel PivotTables and

Power BI Visuals.

3. Relationships pass filters from dimension tables to fact tables and thereby filter the fact

tables and reduce the number of rows that formula must iterate over.

▪ Types of Relationships:

1. One-to- many relationship, where the primary key in the dimension table represents the

one-side, and the foreign key in the fact table represents the many-side. Like with the

relationship between a fact table & dimension table product field.

2. Many-to-many relationship, where both columns can have duplicate values. Like with

the relationship between a sales order fact tables and an invoice fact table, where an

order can show up on many invoices, and an invoice can contain many orders.

3. One-to-one relationship: In this type of relationship, each column contains a unique list.

Like with a company car issued to an employee or student IDs issued to a student.

3. Three Types of DAX Formulas

1. DAX Calculated Columns

2. Measures

3. DAX Table Functions/Formulas

4. Hidden Columns or Tables.

▪ Columns of raw data and columns /tables that serve as intermediate steps in calculation

process, but that are not needed in report area should be hidden.

Page 4 of 50

Star Schema Data Model

• A Star Schema Data Model contains one fact table along with one or more dimension tables, relationships

between the tables and premade reusable formulas. DAX Formulas and the columnar database are designed to

work efficiently with a Star Schema Data Model Design.

1. Fact table: A fact table contains the data that you want to summarize or measure (such as sales

amounts or units sold). Fact tables usually contain foreign keys that connect through a one-to-many

relationships to a primary key in the dimension tables. Fact tables can sometimes be very large; they

may contain 100,000 rows, 1 million rows, or even 100 million rows or more.

2. Dimension table (lookup table): A dimension table contains a primary key field with a unique list of

entities/elements (such as product IDs) with attributes in subsequent fields for dragging into report or

visuals to make conditional calculations (such as product names) or lookup items (such as product

prices). Dimension tables are usually much smaller than fact tables.

• Examples:

• We will use this data model for most of the calculations in the video. This Data Model can be found in the files

named “16-M365ExcelClassStart.xlsx” and “16-M365ExcelClassStart.pbix” (there are finished files also).

Page 5 of 50

Columnar Database

• This database was specifically designed by Microsoft to work efficiently with big data for data analysis and is part

of the Data Model tool.

• A columnar database is a special type of behind-the-scenes data storage location that is loaded into random

access memory (RAM) when you open an Excel or Power BI file.

• A columnar database compresses the data into a smaller size and stores the data one column at a time (hence

the “columnar” name).

• For each column of data that is stored, the columnar database stores a unique list of items.

• The more unique items in any given column, the larger the size of the stored column in the database.

• The database also stores a type of mapping that allows it to reconstruct records of data from the columnar

database when a DAX formula makes its calculation.

Types of DAX Formulas

• DAX Calculated Columns: Formula columns added to a table in the Data Model. Like a Sales column

(intermediate step before a DAX Measure aggregates) or Year/Month column (attribute field use in reports and

visuals). The data created from the formula is stored in the columnar database. Calculated columns are

evaluated (calculated) when the columnar database is refreshed.

• DAX Measures: Reusable, preformatted, aggregate formulas that can be used in reports, visuals, and other

areas in the Data Model. Like a Sum or an Average. Measures have ability to work with big data, make complex

calculations in less complicated ways. The data created inside the formula is NOT stored in the columnar

database. Measures are evaluated (calculated) when they are dropped into a report or visual or when conditions

or criteria are changed for the report or visual.

• DAX Table Formulas: These formulas create tables.

o In Power Pivot you can use DAX Tables in other formulas, like using VALUES in the SUMX function.

o In Power BI you can use DAX Tables in other formulas or you can created tables and store them in the

Data Model.

Page 6 of 50

DAX User Interface in Excel Power Pivot

Page 7 of 50

DAX User Interface in Power BI Desktop

Page 8 of 50

DAX Fundamentals

For most of the examples in the video, we will use in the files named “16-M365ExcelClassStart.xlsx” and “16-

M365ExcelClassStart.pbix” (there are finished files also).You can open these and follow along.

Calculated Columns

• Calculated Columns are like Custom Columns in Power Query or Table Columns in Excel Tables, where you use a

formula to add data to a table such as a sales amount in a fact table or a date attribute like month in a date

dimension table.

• The data is stored in the In-RAM columnar database and the column is evaluated (calculated) when you create

them and when you refresh the table.

• In Power Pivot and Power BI, you create Calculated Columns in Data View. The picture below shows a Calculated

Column for Line Sales.

• When you create a Calculated Column, there are no cell references like there are in the worksheet. Instead, you

use column references, similar to a column reference in an Excel table, like [@UnitsSold], or the each keyword

and column references in Power Query, like each [UnitsSold].

• Types of Calculated Columns: 1) Table record amounts that will be aggregated used in other formulas, 2)

Dimension Table attribute columns, 3) Helper Columns to make Measures less complicated

RELATED DAX function

• When you have a one-to-many relationship between a fact table and a dimension table, you can use the

RELATED function on the fact table many-side to perform an exact match lookup.

• Because there is a relationship, the only input needed is the reference to the column in the dimension table that

has the value you want to retrieve. As shown in the above picture, to lookup a product price, all the REALTED

function needs is the price column reference.

Row Context

• In a DAX calculated column, the formula automatically picks out the correct row value in each row by using

something called row context.

• In DAX formulas, row context is automatically generated when you use calculated columns or when you use

iterator functions such as the SUMX or FILTER.

• In the above picture, row context allows the formula to pick out the correct units in each row and allows the

RELATED function to pick out the correct ProductID to lookup the product price.

Page 9 of 50

Measures

• Measures are reusable, pre-formatted, aggregate / scalar formulas that you use in PivotTable Reports,

PivotCharts, Power BI Visuals and in other DAX formulas.

• The data that is created in a Measure is not stored in the In-RAM columnar database, but instead it is calculated

each time you use the Measure or change the conditions or filters in a report or visual.

• As shown below, in Power Pivot you create Measures in the Measure Grid below tables that are shown in Data

View. When you create a Measure in Power Pivot the assignment operator is := (colon, equal sign). The

convention is: MeasureName : = Formula. In Excel Power Pivot, Measures can also be created in the Measures

dialog box in the Excel worksheet area.

• As shown below, in Power BI, you select a table in Report view or Data view, right-click the table, point to New

Measure, then create formula in formula bar. When you create a Measure in Power BI the assignment operator

is = (equal sign). The convention is: MeasureName = Formula. In Report View, you can use a card visual to check

the result.

Page 10 of 50

Filter Context

When you drop the Measure into a PivotTable or Power BI Visual, the same Measure works in every cell, but the

conditions and criteria from the report or visual filter the fact table down to just the rows that match the conditions and

criteria, as shown here:

Filter context allows DAX measures that are used in a PivotTable, PivotChart, or Power BI visualization to automatically

use the conditions and criteria in the Rows, Columns, or Filters areas to make conditional calculations. This is the context

part, where the DAX measure can see the surrounding situation and pick out all the conditions in the context of the

report or visualization. In addition, when the behind-the-scenes Data Model engine evaluates the DAX context, it does

not use the full fact table but instead uses only rows that match the conditions. This is the filter part, as the underlying

tables are filtered down to a smaller size so that the formula has less work to perform and can make the calculation

more quickly.

Putting it all together, filter context for DAX measures works as follows:

1. When a DAX measure is dropped into a PivotTable, PivotChart, or Power BI visualization, the measure

automatically detects all the external row, column, and filter conditions. For any given cell, the row, column, and

any filters determine the measure’s current external filter context. If there are conditions or filters internally

inside the Measure, the external and internal filters are merged to get the final filter context (conditions for

filtering the fact table).

2. The dimension table is filtered down to a smaller size, based on the final filter context.

3. The relationship transfers the filters to the fact table.

4. The fact table is filtered down to a smaller size, based on the conditions from the final filter context.

5. The DAX measure works with the filtered fact table so that the formula has less work to perform and can make

the calculation more quickly.

Page 11 of 50

Visual of the Filter Context:

Page 12 of 50

COUNTROWS DAX Function is a Super Charged COUNTIFS Function

The next calculation task is to count how many transactions there are for each product; this is a frequency calculation.

To do such a calculation using worksheet formulas, you would have to use a formula like

COUNTIFS(fTransactions[Product],B2), where you specify the product column and the specific product to count. Then, if

you wanted a new formula to count the number of transactions for a different column, you would have to create a new

formula based on the new column, such as this formula to count the number of transactions by category:

COUNTIFS(fTransactions[Category],B2).

With DAX formulas, you can build a single frequency formula that will work on any set of conditions. To do so, you use

the COUNTROWS DAX function, which counts the number of rows in a table based on the current filter context. In a star

schema data model, if you use the fact table inside COUNTROWS, the formula will count records in the fact table based

on any condition. This makes a formula like COUNTROWS(FactTable) a one-stop-shopping frequency formula that can be

used to count based on any set of conditions. This is an example of a DAX formula that is much easier to create and use

than worksheet formulas or other tools. Here is an Example from Power BI Desktop and Power Pivot:

Implicit Measures vs. Explicit Measures

When you drag a field from a table into the Values area of a Data Model PivotTable or a visual in Power BI, a read-only

measure is created and stored in a hidden behind-the-scenes location. Microsoft calls this hidden measure an Implicit

Measure. When you author your own measure, as you did with the Total Sales ($) measure, Microsoft calls that an

Explicit Measure. Implicit measures can sometimes get the right calculation results, but they do so in an inefficient way.

Implicit Measures have several drawbacks, including:

• By default, implicit measures are hidden in the Data Model.

• The measures do not appear in the PivotTable Fields task pane or Power BI Data task pane, and therefore you

cannot reuse them in other reports or visuals.

• You cannot edit the name or the formula part of an implicit measure.

• You cannot attach number formatting to an implicit measure. (However, you can manually add number

formatting in the report or chart.)

• When you create multiple implicit measures in a data model, duplicate or unnecessary implicit measures may be

created.

• This issue has been fixed, but it used to be a problem: If you upload finished Excel or Power BI Desktop file to

Power BI Online, Implicit Measures will not show up in the Data Model or any reports or visuals that you

created. Now, the implicit Measures seem to show up when you upload an Excel file.

When you create an Explicit Measure, you have complete control of the formula in the measure: You can edit the name,

edit the formula, add number formatting to the formula, use the formula over and over, and share your data model

online.

Page 13 of 50

It is important to know how to look for and delete implicit measures because you may at times accidentally drag fields to

the Values area of the PivotTable Fields task pane or inherent a Data Model PivotTable that contains implicit measures.

To show implicit Measures in Excel Power Pivot you can use the Show Implicit Measures button in the Advanced tab in

the Power Pivot for Excel ribbon, as shown below. In Power BI Desktop, I do not know a way to show Implicit Measures.

Case Where Implicit Measures Might Be OK

If you have some Big Data in a Flat Table (all attribute fields in Fact Table rather than a Dimension Table) that will not fit

into worksheet, and your calculations are simple, such as adding, counting or percentage calculations, then it can be fast

and easy to use implicit Measures. After loading the table to the Data Model, you can drag and drop raw data fields into

Values Area of PivotTable to create implicit Measures. As a second option for this scenario, if you load the Big Data Flat

Table directly to the PivotTable cache and use the Standard PivotTable Calculations (this avoids creating Implicit

Measures)

No!

Show

Implicit

Measures

Implicit Measure is Read Only

Page 14 of 50

SUMX and Iterator Functions

In the previous example, we used a two-step process to get total sales by building two formulas:

• DAX calculated column: Line Sales =RELATED(dProduct[RetailPrice])*fSales[UnitsSold]

• DAX measure: SalesTwoStep:=SUM(fSales[LineSales])

The goal was to calculate the transactional sales amounts for each row in the fact table and then aggregate those

numbers into a total. But with the DAX formula language, you can skip over this two-step process and create a single

DAX measure that combines the calculated column and the aggregating measure into one DAX measure. You can do this

by using one of the amazing DAX X iterator functions: SUMX, AVERAGEX, COUNTX, COUNTAX, MINX, MAXX,

CONCATENATEX, PRODUCTX, or RANKX. (There are other types of DAX iterator functions, like FILTER, ADDCOLUMNS and

SELECTCOLUMNS too)

To make a calculation in each row of a fact table and then sum those results, you can use the SUMX iterator function,

which has the following syntax:

=SUMX(table, expression)

This function simulates a calculated column inside a measure, iterating over each row in the specified table to create the

values and then uses the values generated to make the aggregate calculation.

You can often simply take the formula you would have used in a calculated column and place it into an X iterator

function to create a one-step solution, like this:

In the first argument (the table argument), you place the table where you want to make a row-by-row calculation— in

this case, fSales. In the second argument (the expression argument), you place the formula that you want to iterate

down the table to make a calculation in each row—in this case, RELATED(dProduct[RetailPrice])*fSales[UnitsSold].

Row Context in Iterator functions

The amazing thing about SUMX and the other X iterator functions is that they automatically create row context so that

the formula can use the values from each row in the first argument table and so the RELATED function can look up the

price for each row in the table. This single SUMX formula is a more compact solution than the Data Model two-step

process with a calculated column and a measure, and it is more efficient than the worksheet formula and standard

PivotTable method, where you have to create the Excel Table calculated column using the XLOOKUP function and then

do a standard PivotTable calculation.

Page 15 of 50

Two Step and One Step Measures

• A Two Step Measure is created when you use a Measure to aggregate the results from a Calculated Column

• A One Step Measure is created when you use an X Iterator function to create the intermediate values that would

have been created in a Calculates Column before aggregating with functions like SUMX, COUNTX and

AVERAGEX.

• Both the one step and two step methods will yield the same result, as shown here:

Characteristics of two methods:

• Two-step method: With the two-step method, the values generated by the calculated column are stored in

the columnar database & become part of what is stored in RAM. This increases file size. When you refresh the

table, either in the Power Pivot for Excel window or in Power Query, the calculated column values are

recalculated.

1. DAX calculated column: Line Sales =RELATED(dProduct[RetailPrice])*fSales[UnitsSold]

2. DAX measure: SalesTwoStep:=SUM(fSales[LineSales])

• One-step method: With the one-step method, the values that are generated inside the SUMX function are not
stored in RAM. The values in the SUMX function are recalculated each time you drop the measure into the
report/visual or when a condition is changed in the Rows, Columns, or Filters area of the report/visual.

1. SalesOneStep:=SUMX(fSales,RELATED(dProduct[RetailPrice])*fSales[UnitsSold])

When building DAX measures in the Data Model. the convention is to use the one-step method because the measure

can be created more quickly, and the in-RAM database does not have to store as much data. As the great DAX formula

masters Marco Russo and Alberto Ferrari say, for most models under 100 million rows of data with simple calculations,

either method will work fine, and so it becomes a matter of preference whether to use the two-step method or the one-

step method. However, my rule of thumb is that if an X iterator Measure calculates slowly every time you drop it into a

report/visual, it might be better to move the calculation back to a calculated column (keeping in mind that other issues

might cause slowness such as unnecessary content transition over a fact table).

Page 16 of 50

Understanding How Filter Context and Row Context Work Together

When you use an X iterator function such as SUMX in a measure and then drop it into a report or a visual, filter context

and row context work together to make the final calculation. As shown in the figure below, when the SUMX measure is

in the Aspen cell, the Aspen filter context filters the fUnits table in the first argument of the SUMX function down to

110,185 rows. Then, the SUMX function’s row context allows the formula in the second argument to make the

calculation row by row, pulling out the correct units sold, looking up the correct product price, and finally multiplying the

amounts to get the transaction sales amount for each row. Once SUMX has created all the transactional sales amounts

for Aspen, then it adds to get a total of 253,016,877.15 and delivers the result to the Apsen cell in the PivotTable. The

Measure does uses this process for each row in the report to get the correct sales amount for each product.

Gross Profit

Gross profit is a metric that assesses how well a company can manage the variable production and labor costs that go

into producing a product or service. The formula for the gross profit calculation is:

Gross Profit = Total Sales – Total COGS

Gross profit tells you how much of the total sales is left over after subtracting all the variable production costs, which

can then be used to cover fixed costs (such as rent, utilities, and administrative costs) and profit for the company. For a

boomerang manufacturing company, total sales would be the revenue brought in from selling the finished boomerang

products, and COGS (cost of goods sold) would be the variable costs incurred from producing the boomerangs, such as

wood, paint, labor to make the boomerangs, packaging, and other costs that went into producing the boomerangs. The

formula for the percentage of gross profit calculation is:

% Gross Profit = Total Gross Profit/Total Sales

Page 17 of 50

The percentage of gross profit expresses the number of pennies for every one dollar of sales that can be used to cover

fixed costs and profit. For a manufacturer, this is an important metric that indicates the health of the company. If the

percentage of gross profit is increasing over time, it can indicate that the company is managing variable product costs

well and that profit may be going up. If this metric goes down over time, it may indicate that the costs of production are

increasing and that profits may be lower.

Using Measures in Other DAX Formulas

The conventions for referring to Measures or table columns in formulas is as follows:

• When you use Measures in other DAX Formulas you type square brackets around the Measure name, like:

[MeasureName]

• When you use a column reference in DAX Formulas you type table name and then in square brackets you type

the column name, like: TableName[ColumnName]

I created these two Measures:

• TotalSales:=SUMX(fSales,RELATED(dProduct[RetailPrice])*fSales[UnitsSold])

• TotalCOGS:=SUM(fSales[COGS])

To create a Measure for Gross Profit, we can use the two measures in a new Measure, as shown below:

Here is what the 3 Measures look like a PivotTable and a Matrix:

Page 18 of 50

DIVIDE Function & % Gross Profit

In order to create the % Gross Profit measure, you have to perform division. In the DAX formula language, there is a

built-in function to do this: DIVIDE. The DIVIDE function, which delivers the quotient of two numbers and allows you to

specify an alternative value when the denominator is zero, has the following syntax:

DIVIDE(Numerator, Denominator, [AlternativeResult])

If you omit the third argument, [AlternativeResult], you get a DAX blank value, which is neither an empty cell, as you

might get in the Excel worksheet, nor a null value, as you might get in Power Query, but instead it will show nothing in

the report. The picture below shows how to use the DIVIDE function to calculate % gross Profit in Power BI Desktop:

CALCULATE Function and Filter Context

• The CALCULATE DAX function allows you to change the external filter context (conditions from the Rows area,

Columns area, Filters area, and slicers) for a measure by specifying one or more new internal filters (logical tests

and conditions) inside in the function.

• CALCULATE can also convert the row context in a calculated column or a DAX iterator function into filter context

with a process called context transition.

• The CALCULATE function arguments are:

CALCULATE(Expression, Filter1, Filter2…)

• The Expression argument, which is a required argument, contains the scalar formula for which you want to

change the filter context.

• The Filter arguments allow you to specify one or more new internal filters by using:

o A filter modifier function like: ALL, ALLEXCEPT, or ALLSELECTED.

o A Boolean (True/False) formula like: dProduct[Product]=”Quad”.

o A DAX table function that defines a valid list of values as a filter like: DATESINPERIOD or the VALUES DAX

function.

• When you enter two or more internal filters into the Filter arguments, the filters are run as an AND logical test.

• If a field is used in both the external and internal filters, the external filter is removed and replaced with the

internal filter.

o For example, if a measure is in the Aspen product row in a report, and the filter inside CALCULATE is

dProduct[Product]=”Quad”, the internal filter dProduct[Product]=”Quad” would replace the external

filter dProduct[Product]=”Aspen”, and the measure would calculate an amount for the Quad product.

• The Filter arguments are not required. If you omit these arguments, CALCULATE will perform context transition

without an internal filter. If you use the Filter arguments and row context is available, external filters, internal

filters, and the transitioned row filters are all merged in an AND logical test.

• When all external and internal filters are evaluated by the CALCULATE function, CALCULATE creates the final

filter context by running an AND logical test with all remaining external and internal filters. The final filter

context is used to filter the underlying data model tables so the measure can calculate the formula result.

Page 19 of 50

ALL Function

• The ALL function has two uses:

o It can be used on a single column, multiple columns, or a full table to remove the filter context and

return a table.

▪ When it is used on a table, it removes all filters and returns the full table.

▪ When used on a column or columns, it returns a unique list of records as a table with a single

blank row if there are unmatched items in the relationship. Columns must be from the same

table.

o When you use it in the CALCULATE function as a filter, such as ALL(), it removes all filters in the data

model. You can also use the ALL function with a columns, columns or a table to remove filters from

specific columns or table.

VALUES Function

• The VALUES function “sees” the current filter context and delivers a unique list as a table for a column, columns

from the same table or a full table. If there are unmatched items in the relationship, it returns a single blank row

to bottom of the unique list.

• If the table returned is a single item, it is returned as a scalar value. We can use VALUES to bring a variable from

a table into a DAX Formula.

ALL and VALUES functions compared

VALUES(Column or Table) ALL(Column or Columns from Same Table or Table)
“Sees” current filter context and delivers a unique list Removes filters and delivers a unique list or table
Don’t want unmatched blank use: DISTINCT Don’t want unmatched blank use: ALLNONBLANKROW

Example of ALL and VALUES in CONCATENATEX DAX Function

This example can be found in the file named “17-VALUES-ALL.xlsx” in the folder named “ExtraSingleExampleFiles”.

Page 20 of 50

ALLSELECTED Function to get a Filtered Grand Total

• When you use ALLSELECTED() as a filter modifier it removes the row and column filters in a particular PivotTable,

PivotChart or Visual, but retains the other filters in the Data Model. In this way, you can use the ALLSELECTED()

filter modifier to show a filtered grand total amount, which is useful when you want to compare a filtered

number against a filtered grand total.

• However, if you use a measure with ALLSELECTED() in other measures, such as in iterator functions, your

formula will remove the row and column conditions from the table being iterated—rather than removing any

row or column conditions from a given report or visual.

• Microsoft Help: the ALLSELECTED function gets the context that represents all rows and columns in the query,

while keeping explicit filters and contexts other than row and column filters. This function can be used to obtain

visual totals in queries.

ALLEXCEPT Function

ALLEXCEPT allows you to remove filters from a table except for filters on specified columns and then returns a table of

unique records. The columns to exclude can be any column in the Data Model. You cannot use table expressions or

column expressions (formulas) inside the ALLEXCEPT function: only tables and columns.

FILTER and CALCULATETABLE functions

FILTER(Table, Filter) CALCULATETABLE(Table,Filters1, Filter2…)

Iterates Row-By-Row when filtering Uses Data Model Filtering mechanism when
filtering

Filter columns must be from table in 1st argument of FILTER Fact Table can be filtered by any columns in the
Start Schema Data Model

In CALCULATE a Boolean filter is converted to a FILTER & ALL
Function formula construction. For example, the Boolean filter
dProducts[Product]=”Quad” is converted to
FILTER(ALL(dProducts[Product]), dProducts[Product]=”Quad”)

Performs Context Transition if Row Context is
available

There is only one Filter argument in the FILTER function. For an
AND Logical Test use Double Ampersand, like: &&. You can use
Double Pipe to create an OR Logical Test, like ||.

Multiple Filter arguments that work in an AND
Logical Test. You can use Double Pipe to create an
OR Logical Test, like ||.

• Examples of CALCULATETABLE and the FILTER function (in file named “17-ExtraDAXTablesExample.pbix”):

Page 21 of 50

Examples of CALCULATE to Change Filter Context for Various % of Total Calculations

Page 22 of 50

Time Intelligence Functions such as SAMEPERIODLASTYEAR

Time Intelligence functions can be used with a date table to change the filter context. Below is a list of some of these

functions. The Data Table must have all days for all years that span the minimum and maximum years from the dates in

the Fact Table in order for these functions to make correct data calculations.

Page 23 of 50

IF function

The IF function is the same as in the Excel worksheet, except that if the third argument is omitted, a DAX Blank is used.

HASONEVALUE function

HASONEVALUE is a Boolean DAX function that returns TRUE when a field in the current filter context contains only one

value and FALSE when it contains more than one value. For example, if you use the HASONRVALUE function is a

Year/Month Report, in the January 2018 row, the Year field contains only the 2018 value; in the January 2019 row, the

Year field contains only the 2019 value; and in the 2019 total row, the Year field contains only the 2019 value. It is only

in the grand total cell where the field contains more than one year value: It contains all four years. This function can be

used to prevent a formula from executing in the grand total row.

VAR & RETURN to define Variables in DAX Formula

• You can define a variable in any DAX expression by using VAR followed by RETURN. In one
or several VAR sections, you individually declare the variables needed to compute the
expression; in the RETURN part you provide the expression itself.

• Visual of VAR & RETURN:

YOY % Change DAX Formula and Report from above formula

Page 24 of 50

YOY % Change Formula For Partial Year Data:

1. Helper Column in Date Table that asks the question “Is date in date table less than or equal to the last sales date

in the fact table that is pushed 12 months back?”

2. CALCULATE uses the Helper Column from the Date Table as a filter to filter out dates after the last sales date in

the Fact Table. This prevents the formula from calculating after the last sales date in the fact table. This is helpful

for reports and visuals so that the amount does not show after the last sales date in the Fact Table. For amounts

in the first year, because the last year Measure delivers a blank, the DIVIDE function divides by zero and is thus

triggered to show a blank in the report or visual.

Boolean Filters in CALCULATE

1. “Boolean Logical Test Filter”, or just “Boolean Filter” means that you use a single column, a comparative

operator and a condition, like: dProduct[Product]=”Quad” in the two below examples:

Page 25 of 50

2. Why Same "Quad" Sales Number in all cells?

3. Because the CALCULATE functions uses the overwrite operation to merge the external filter (products in row

area of report and “W” (West) from the slicer) with the internal filter (Quad) into the final filter context that

filters the underlying fSales table.

Overwrite Operation in CALCULATE function

4. Example of Overwrite Operation for Aspen cell:

Boolean Filter Behinds Scenes Runs as a FILTER and ALL Function Construction

5. When you use a Boolean Filter, behind the scenes it uses the ALL and FILTER functions like this:

Page 26 of 50

KEEPFILTERS Function to Perform AND Logical Test Rather Then An Overwrite Operation in CALCULATE

6. If you do not want the Boolean Filter result to have the same amount show up in every cell, you can use the

KEEPFILTERS DAX Function around the Boolean Filter as shown below. The KEEPFILTER function prevents the

CALCULATE function from using the Overwrite Operation and instead it forces the CALCULATE to run an AND

Logical Test. Said a different way: KEEPFILTERS merges External Filter Context with the Internal Filter Context

with an AND Logical Test rather than with the Overwrite Operation.

FILTER and VALUES Functions to SIMULATE KEEPFILTER Result

Below formula delivers the same result as KEEPFILTERS because VALUES in the first argument of FILTER can see the

External Filter Context.

Here are the steps for how this formula calculates its

results and shows only the Quad row in the report:

1. In "Aspen" cell, VALUES function can "see"

external filter context and so Aspen row

condition flows into VALUES.

2. VALUES Delivers a one row table for the Aspen

product to the first argument of FILTER.

3. From the internal filter context, FILTER applies

the condition "Quad" to the Aspen row by

asking: "Aspen" = "Quad"? The FALSE answer

causes FILTER to deliver a blank as the condition

in the filter argument of CALCULATE.

4. CALCULATE filters the underlying fact table

down to no rows and the Measure delivers a

blank.

5. The blank causes the report to show no row for

Aspen.

6. The "Quad" cell in the report is the only row

where "Quad" = "Quad", so it is the only row

that appears in the report.

Page 27 of 50

Logical Operators in DAX:

• AND Logical Test uses: & & (Double Ampersand)

• OR Logical Test uses: | | (Double Vertical Bar)

• List of Conditions for OR Logical Test: IN { “Condition1”, “Condition2”, … “ConditionN”}

• NOT: use NOT Function

• Comparative Operators: =, <, <=, >, >=, <>, = = (strictly equal to)

o The “strictly equal to” operator == returns TRUE when the two arguments have the same value or are

both BLANK. A comparison between BLANK and any other value returns FALSE.

Page 28 of 50

AND Logical Test with Two Filter Arguments in CALCULATE function

You can construct an AND Logical Test in the CALCULATE in these ways:

1. Use two filter arguments in CALCULATE, like:

• QuadSalesBandNW:=

CALCULATE([TotalSales($)],

 dProduct[Products]="Quad", dSalesReps[Region]="NW")

2. Use Double Ampersand when the two columns are the same, like:

• Both are fSales[LineSales], so this works:

CountSalesBetween0and500:=

CALCULATE([CountTransactions],

 fSales[LineSales]>0 && fSales[LineSales]<=500)

• The two columns are different, so you get an Error:

QuadSalesBandNWError:=

CALCULATE([TotalSales($)],

 dProduct[Products]="Quad" && dSalesReps[Region]="NW")

3. The AND function if the columns are from the same table, like:

• CountSalesBetween0and500AND:=

CALCULATE([CountTransactions],

 AND(fSales[LineSales]>0,fSales[LineSales]<=500))

OR Logical Test in CALCULATE function

Because the filter arguments in the CALCULATE function do not work as an OR Logical Test (they work as an AND

Logical Test), you can use the OR function with columns from the same table or you can use Double Vertical

Bars. Examples here:

• FreeStyleBoomsSales:=

CALCULATE([TotalSales($)],

KEEPFILTERS(

 dProduct[Products]="Quad" || dProduct[Products]="Carlota"))

• FreeStyleBoomsSalesOR:=

CALCULATE([TotalSales($)],

KEEPFILTERS(

 OR(dProduct[Products]="Quad", dProduct[Products]="Carlota")))

Two Arguments in
CALCULATE.

Same Two Columns so this
works with &&.

Different Columns
so you get error

with &&.

AND function requires that both
columns are from same table.

Double Vertical
Bar for an OR

Logical Test: | |.

OR Function for
Logical Test.

Page 29 of 50

KEEPFILTERS to Create Filtered Reports

This KEEPFILTERS and OR Logical Tests Construction is a method of creating a report with only certain items with

no need to use a filter or slicer, as shown here:

OR Logical Test for List of Items using IN Operator in CALCULATE function

NOT Logical Test in CALCULATE Function to Filter to Items NOT IN List

Page 30 of 50

CALCULATE to perform Context Transition

• CALCULATE and CALCULATETABLE DAX functions can do these two things:

1) Change the Filter Context.

2) Perform Context Transition, which takes all available Rows Contexts and merges them with an AND Logical

Test and then converts them to Filter Context. When you invoke Context Transition on a table, the table must

have a unique set of records or a primary key to avoid the double count error.

• Examples of Context Transition:

1) In a Calculated Column there is no Filter Context, and so an aggregate calculation like SUM can not “see” the

ProductID Row Context to calculate the Product Sales for each row, like:

2) If we put SUM function inside CALCULATE, because CALCULATE is programmed to convert all available Row

Context into Filter Context, the ProductID Row Context in each row is converted to Filter Context, then the

Fact Table is filtered down to just the rows for that product, and the Calculated Column formula can deliver

the correct Total Sales for Each Product, as shown below. Context Transition works because the table being

iterated contains a unique set of records.

3) In the DAX Formula language, all Measures have a hidden CALCULATE Function wrapped around it. This means

that whenever you use a Measure in a Calculated Column or an Iterator function, it will convert the available

Row Context into Filter Context, like:

4) Here is a Formula that calculates the % of Total Sales for each product in a Calculated Column using the

aggregate SUM function with no Filter Context and the Total Sales Measure with Filter Context:

5) The #1 Problem to watch for when invoking Context Transition is: the double count problem when you invoke

context transition over a table with duplicate records. Because many fact tables have duplicate records, this is

a common mistake. In the below picture, when the Measure invokes Context Transition, the Row Context is

Converted to Filter Context and the Fact Table is filtered for each row being iterated, but for rows with

duplicate records, the table is not filtered down to just one row, but instead it is filtered down to all matching

rows, which is not correct. For example, in the picture below, the two records are identical and so for each of

the records the Filter Context will deliver two rows and thus double count the Line Sales Amount.

Page 31 of 50

6) The real power of Context Transition can be seen in a Measure like Average Monthly Sales, which we can use

in a Product Report to calculate Average Monthly Sales By Product with only a single formula, rather than a

multiple step approach and seen in the bottom part of the picture below.

Page 32 of 50

When Context Transition Causes Trouble: Context Transition for a Measure Over a Table with Duplicate Records

Looking at Formula #3, when you invoke Context Transition over a table with duplicate records or no primary key, for the rows that are duplicates, the table will

be filtered down to show all matching records, and thus the formula will calculate an amount that uses all matching records (a value that is too big) rather than

make the calculation based on the single row (shown in picture at bottom of page). In this case, rather than invoke Context Transition with the hidden calculate

in a Measure, use a formula rather than a Measure (Formula #2).

This shows a duplicate record in fact table. The LineSales column shows the correct amount
of 307.65 for each of the duplicate records. But the LineSalesM column shows that the

Context Transition for the duplicate rows double counts the amount because Row Context is
converted to Filter Context and for each duplicate record the fact table is filtered down to

two rows, and the incorrect double amount of 615.3 is the result for both duplicate records.

Page 33 of 50

Rule for When to Use Context Transition:

• When you iterate over table with duplicate records no primary key: Use formula.

• When you iterate over table with a unique set of records or has a primary key: Measure that invokes Context Transition won't cause miscalculation.

12 Month Moving Average DAX Formula and Report

When you have volatile sales and you would like a metric to help see the over all trend, you can use a 12-Month Moving Average as shown in the figure below.

Page 34 of 50

Moving 12 Month Average Formula For Partial Year Data:

The IF function logical test asks the question “in the current filter context, is there a fact table sales date?” When there is

no sales date, this prevents the Measure result from showing up after the last sales date in the fact table.

Complex Filter

• Complex Filter is a filter that involves two or more columns and uses a combination of AND Logical Tests and OR

Logical Tests, such as:

o
• Complex Filter Reduction Error can happen when:

o We have a complex filter on two or more columns in a PivotTable or Power BI Visualization.

o In a Measure, we have an Iterator function that is iterating over one or more of the columns involved in

the external complex filter.

o Context Transition (Row into Filter Context) is occurring in the 2nd argument in the iterator.

o The Overwrite process in CALCULATE replaces the External Column/s with the Internal Columns/s and

leads to the incorrect number of rows in the table being iterated.

o The KEEPFILTERS function can help to solve this error by instructing CALCULATE to use an AND Logical

test rather than the Overwrite Operation. But it is MUCH better to build a data model solution by adding

an EOMONTH column in the Data Table and use that column to iterate over.

CROSSJOIN DAX Table Function

• CROSSJOIN(Table,Table) = Cartesian product of two or more tables that returns a table, # rows = product of the

of rows from all tables, # columns = the sum of the # of columns in all tables.

• Example of CROSSJOIN in first argument of AVERAGEX function is on next page

Page 35 of 50

Page 36 of 50

Star Schema Data Model and Expanded Table Diagram:

Page 37 of 50

Table Filter To Go Backwards Across Many-To-One Relationship

This example can be found in the file named “17-TableFilter.xlsx”.

Example of “Unique Months Transactions Occurred” Count for each Supplier:

1. The below COUNTROWS / VALUES formulas (UniqueMonthsTransactionOcurred Measure) is counting filtered

rows on the EOMONTH Field. But it returns a 48 count of all possible months because the filter from the

dProduct that is filtering the fact table cannot move across the Many-To-One Relationship from the Fact Table

(fCompressor) to the Date Table (dDate).

2. But when we add a table filter of fCompressor as a filter in CALCULATE

(UniqueMonthsTransactionOcurredTableFilter Measure), because the expanded table has all fields from the

data model, including the dDate table, the dDate table is filtered down to just the EOMONTH unique dates that

the VALUES function is delivering for the current filter context.

Table Filters like Fact Table
allow you to send a filter

backwards across a Many-
To-One Relationship

Page 38 of 50

DAX Formula Evaluation Context Summary

i. There are Two Evaluation Contexts:
1. Row Context = allows a formula in a Calculated Column or an Iterator Function or in a

PivotTable/Power BI Visualization to see the row and use the values from the row to make a
Row-By-Row Calculation.

2. Filter Context = all the Filters / Conditions / Criteria that filter the underlying tables in the Data
Model to provide the final values for the Measure to use to calculate the final answer.

ii. CALCULATE and CALCULATETABLE DAX functions can do these two things:
1. Change the Filter Context.
2. Perform Context Transition, which takes all available Rows Contexts and merges them with an

AND Logical Test and then converts them to Filter Context.
iii. All Measures have a hidden CALCULATE function wrapped around it.
iv. There are two types of Filter Contexts that are used to determine the Final Filter Context under which

the Measure makes its final calculation:
1. External Filter Context = Filters / Conditions / Criteria from Excel PivotTables or Power BI

Visualizations.
2. Internal Filter Context = Filters / Conditions / Criteria from inside the CALCULATE function.

v. How Final Filter Context is determined:
1. Filters / Conditions / Criteria from Excel PivotTables or Power BI Visualizations flow into a

Measure.
2. Inside the Measure the internal and external filters are merged into the Final Filter Context

using the operators:
i. And Logical Test (Intersect)
ii. Overwrite
iii. Remove

vi. When the ALL functions is used in a CALCULATE Filter argument, all the filters for the column, columns
or table are removed and become an empty filter.

vii. When Complex Filters exist in the External Filter Context and the same columns are used in the first
argument of an Iterator function, then you can use KEEPFILTERS to perform an AND Logical Test rather
than Overwrite.

viii. ALLSELECTED() DAX function, with no tables or columns added as arguments, serves as a filter modifier
that will remove the row and column filters from the report or visual and leave the filters that are external
to the report or visual intact.

ix. Column filters work on just the column.
x. Table filters work on Expanded Table and can go backwards across One-To-Many Relationship.

Calculating Averages at Different Grains and with Different Formulas

There are many different types of averages, such as mean, median, mode, and geometric mean. The most common

average is the arithmetic mean, also called just the mean. This metric is commonly known as an average, and I will refer

to it as such. The average calculation involves adding up a set of numbers and dividing by the count of that set of

numbers. This metric is helpful because it gives you a single number that represents all the data points and can be used

to gauge the typical performance for a given set of numbers.

In analytics, you are usually given a fact table with a certain grain (which refers to the size of the number in each row).

The fact table in this project has a transactional grain, where each row in the table represents a sale of a product, by a

specified SalesRep, on a specified date. If you average the sales amounts in all the rows of the fact table, because the

grain of each number is at the transactional level, you are calculating the average transaction sales. If you add the

transactional sales amounts to get the daily sales total amounts and then use those numbers to calculate an average,

because the grain of each number is now at the day level, you are calculating the average daily sales. If you add the

Page 39 of 50

transactional sales amounts to get the monthly sales total amounts and then use those numbers to calculate an average,

because the grain of each number is now at the month level, you are calculating the average monthly sales. Each of

these metrics communicates the typical sales amount at the given grain.

We will make these three average calculations:

• Average transactional sales by product

• Average daily sales by product

• Average monthly sales by product

If the goal is to calculate the average transactional sales, you can just use the Line Sales field from the fact table inside

the AVERAGE DAX function, which works the same as the Excel worksheet AVERAGE function. That formula uses the fact

table row line sales numbers as a set of numbers; it adds them up and divides by the count.

However, you often need to make aggregate calculations, such as averages, with a grain that is larger than the grain in

the fact table. For example, to calculate the average daily sales, the grain of the numbers needed in the formula is larger

than the grain of the numbers in the fact table. Luckily, DAX formulas can deal with such grain disparities easily; in fact,

this ability is one of the main benefits of DAX formulas.

For the average daily sales calculation, there are two useful approaches to building the DAX formula:

1. The first approach is to pre-aggregate the daily sales amounts and then, once you have the daily sales totals,

average those numbers. The pre-aggregation is necessary because there are many records in the fact table for

any given day. You must add up the sales for each day and then, once you have that set of daily sales numbers at

the correct grain, you can average them. For this approach, you can use the AVERAGEX DAX function.

Note: If you needed to calculate the average daily sales with only the standard PivotTable tool and worksheet

formulas, because there is no way to pre-aggregate numbers with a standard PivotTable calculation, you would

be forced to create an intermediate table in the worksheet with the total sales for each date and then make a

standard PivotTable from that intermediate table. This approach was common before the Data Model and DAX,

but it was time-consuming, did not work well with large datasets, and could become very complex.

2. The second approach to calculating average daily sales is to just add up all sales and then divide by the unique

count of dates in the Date field in the fact table. This approach is more straightforward than the first approach,

but it is possible only because there is a field in the fact table that allows you to create a unique list of dates. For

some calculations, such as average monthly sales, there is usually not a field in the fact table that allows you to

get a unique count of months for the denominator, and therefore you cannot use this second approach (though

the first approach will work). When you have an attribute field in the fact table, you can use the DIVIDE and

DISTINCTCOUNT DAX functions.

Note: If you needed to calculate the average daily sales with only the standard PivotTable tool and worksheet

formulas, because there is no unique count calculation in the standard PivotTable, you would once again be

stuck with a more inefficient worksheet solution if you wanted to use this second approach.

Examples on Next Page →

Page 40 of 50

Average Transactional / Daily / Monthly Sales By Product DAX Formulas:

Page 41 of 50

Unmatched Items in a Relationship

This example can be found in the file named “17-UnmatchedItems.xlsx”.

As shown in the picture below, when you have a one-to-many relationship from a Dimension Table to a Fact Table, if

there items in the fact table (many side) that are not in the Dimension Table (one-side) then when you use an attribute

field (foreign key) from the fact table in a report or visual, all items will show, but if you use the primary key or other

fields from the dimension table in a report or visual, you will show one blank cell that accumulates all missing items.

Page 42 of 50

Date Table with the DAX functions GENERATE and ROW

These examples can be found in the file named “17-DAX-DateTableExamples.pbix”.

• The ROW DAX table function creates a one-row table with field names and values that you specify.

• The GENERATE DAX table function takes two or more tables and performs a cross-join (which is a Cartesian

product in set theory) between the two table functions to generate a new third table. A cross-join simply

matches up each row from the first table with a row from the second table. In the below example, because the

first table is a single column of dates, and the second table is a single row with date attribute DAX formulas,

each date in the first table will have a single row of data attributes added to it to create a full date dimension

table.

Page 43 of 50

Only 1 input:

Fact Table Date

Field

Page 44 of 50

Using the DISTINCTCOUNT and DIVIDE DAX Functions for faster calculating average

These examples can be found in the file named “17-21MillionRowTable.xlsx”.

The DISTINCTCOUNT DAX function counts the number of unique values in a column. This function is particularly fast at

calculating an answer because it communicates with the Data Model columnar database, which is programmed to store

all original full table fields as unique list columns. Thanks to this columnar database characteristic and because the fact

table has a date field that correctly marks each row with the date attribute, you can create an alternative average daily

sales formula by using the DISTINCTCOUNT function, and the resulting formula will have a faster calculation time than

the AVERAGEX formula. Examples shown here:

Cardinality of Tables in Iterator Functions

These examples can be found in the file named “17-21MillionRowTable.xlsx”.

• Cardinality = number of items in a set (table or array) or number of iterations.

• Cardinality matters for Big Data Calculations because, in general, the smaller the cardinality or the fewer the

number of iterations, the faster the formulas will calculate.

• Examples of Total Sales Calculations from Video:

Page 45 of 50

Approximate Match Lookup with DAX:

These examples can be found in the file named “17-DAX-ApproximateMatchLookup.xlsx”.

1. Approximate Match Lookup DAX Formula to lookup the correct Discount Based On Units Purchased (both fields

in lookup table must be sorted smallest to biggest):

2. Approximate Match Lookup DAX Formula to look create Foreign Key Column in Fact Table based on Units Field

so that a relationship can be used to do Approximate Match Lookup:

3. Relationship can now be used with REALTED function to lookup correct Discount:

4. This is a stand-alone Approximate Match Lookup Formula that allows the Discount column to not require sorting

from smallest to largest (Units Field does require a sort from smallest to biggest):

Page 46 of 50

ADDCOLUMNS and SELECTCOLUMNS DAX Table Functions

• ADDCOLUMNS(Table,"Name New Column", Expression) = Adds new column/s to a table. ADDCOLUMNS iterates

Row-by-Row over the table in the first argument.

• Example of ADDCOLUMNS to add COGS to the fSales table:

• SELECTCOLUMNS(Table,"Name New Column", Expression) Has the same signature as ADDCOLUMNS, and has

the same behavior except that instead of starting with the <Table> specified, SELECTCOLUMNS starts with an

empty table before adding columns. SELECTCOLUMNS iterates Row-by-Row over the table in the first argument.

• Example of SELECTCOLUMNS to select the “Units” and “Sales” columns from the fSales table and to create the

two calculated columns “Product” and “COGS”.

DAX Studio

1. DAX Studio is a program that allows you to build DAX Formulas and time the speed of the formulas.

2. You can search for and download the program DAX Studio.

3. In Excel it appears in the Add-in Tab, as shown here:

Page 47 of 50

4. To use DAX Studio for a Power BI Desktop file, you must open DAX Studio and in the first step select the Power

BI Desktop file that you want to examine, as shown here:

5. DAX Studio only delivers table results (called a Query Result), and the DAX Code must always be preceded by the

EVALUTAE command, as shown here:

6. To create or time Measures (scalar values), you must house Measure in the ROW function and create a one row

table, like:

Page 48 of 50

Using DAX with Existing Connections feature to extract Data From Data Model into Worksheet

1. This example is in the file named “17-M365ExcelClassFinished.xlsx”.

2. The Existing Connections feature in Excel allows us to extract data from the data model and load it to the

worksheet.

3. This feature is very “clunky” and “primitive”.

4. Here are steps:

1. As shown below, Select cell in worksheet, click Existing Connections button in Get & Transform group in Data

Ribbon tab, then in then in the Existing Connections dialog box select the Tables tab, then select a table from the

Data Model and then click Open, then in the Import Data dialog box, click OK.

Page 49 of 50

2. In a cell in the imported table, right click, point to Table, then click on Edit Dax, as shown here:

3. In the Edit DAX dialog box, select DAX from the command type dropdown arrow, then copy and paste the code

from DAX Studio into the Expression area, as shown here:

Page 50 of 50

4. Here is a second DAX Expression:

5. Result looks like this:

