M 365 Excel Class Video 17: Fundamentals of DAX in Excel & Power BI.

Table of Contents @
WAL HS DAX? ..ttt ettt ettt ettt ettt e ettt e e s sttt e e e b bt e e e e a b et e e s ab et e e e e a st et e e e abe et e e e n b e ee e e nbee e e e e aabbeeeeebbeeeeeanbaeeeeanreeeenn 3
Data MOAEl COMPONENTESeeiiieiiiiiee ettt ettt ettt ettt e ettt e e e bt e e s ab et e e ea bt e e e e aabb e e e e e ambeeeeeaasbbeeesnbeeeesanbaeeeesanbeeeesanneeas 3
Star SChEM@ Data IMOELcco ettt ettt e e ettt e e e bttt e e e abe e e e e ab bt e e e aanbeeeeeanbaeeeseanbaeeessanraeeean 4
(6o 1[N TRl D) - | o - 1T S O PO PP PUPPROPRPON 5
TYPES OFf DAX FOIMUIAS ...ttt ettt ettt et esab et e bt e e s bt e e sab e e e eab e e e bbeesabeeeaabeeenbeesabeeesabbeesaneeesnreeas 5
DAX User Interface in EXCEI POWET PIVOTL.....coocuuiiiiiiieie ettt ettt et s e e st e e s s mr e e e s eanbeeessnreeeesenneees 6
DAX User Interface in POWET Bl DESKEOP.ciiourtiiiiiiieie ittt et s e e s e e s s e e e e s e nreeessnreeeessnneees 7
DAX FUNAAMENTAIS. ...ttt et e e e sttt e e sttt e e s sttt e e e mb e e e e s abeeeeeanreeeesaanreeessnreeeesannnees 8
(6 Lol0] -1 1=Te [@o] [¥] 1 4o -3 P OO PPN 8
RELATED DAX FUNCLION «.ceiiitiiteeeiitee ettt ettt ettt e ettt e e ettt e e sttt e e s aab et e e s st et e e e aanbeeeesanbaeeesannbeeeesanrneeeesnreeeenanne 8
ROW CONEEXE ..o eeeeeeeeens 8
V== 1Y U =13 PP PPPPPPN 9
=T 0o a1 1= A TP URPRPPPPRRN 10
COUNTROWS DAX Function is a Super Charged COUNTIFS FUNCLION.........uuuuiiiiiiiiiiiiiiiiiiiiiieiiieeeenneeaeeeenenne e 12
IMplicit Measures Vs. EXPlICIt IMBASUIES..........uiiiiiiieeiiiittet et e ettt e e e e e ettt e e e e e e s s abb ittt e e eeeessaassbbbaeeeeesssssnnsreeeeeas 12
Case Where Implicit Measures Might BE OK.........c.uuuiiiiiieeiiiiiiiiieee ettt e e e e e et e e e e e s s s sstbbbaeeeeeessssnnnsraeeeeessenns 13
SUMX and [EErator FUNCLIONScooiiiiiiiiiiiiie ettt ettt ettt e ettt e e e e bt e e s abe e e e e aab bt e e e enbeeeeeanbeeeesanneeeeesannneas 14
ROW CoNtext in [terator fUNCLIONS. ittt ettt e e sttt e e ettt e e e s eabb e e e e eabbeeesebbaeeeenee 14
TWO SEEP @Nd ONE SEEP IMBASUIEScceeee e ettt eaaeaaaaaaeas 15
Characteristics Of tWO METhOOS:ttt e e et e e e e eab bt e e e ebbe e e e eabteeeeeaneeas 15
Understanding How Filter Context and Row Context Work Together..............oooiii e, 16
LCT o R o) PRSPPI PPPRTOPPN 16
Using Measures in Other DAX FOMMUIAScooeeeeiii e, 17
DIVIDE FUNCION & % GrOSS PrOfil ... eiieiiiiiiie ettt ettt ettt e e sttt e e sttt e e e s sabb e e e s sbbeeesenbaeeeeaes 18
CALCULATE FUNCEION @Nd FIEEI CONEEXLeiiiiiiiiie ettt ettt ettt ettt e e ettt e e e st e e s e abt e e e s eabbee e s sabteeeseaneeas 18
FAN I ¥ ot o o o PO OO P OPPPPPPTTTN 19
VALUES FUNCEION ..t e aaaaeaeaaeaaaeaaaaaaaaaeeeens 19
ALL and VALUES fUNCLIONS COMPAIEMuviiiiieeeeiccciiteeeee e ettt e e e e e e sttt e e e e e e e e sssaetaaeeeaeesssasssaaeeeseeeessansssnnaeeeeeanns 19
Example of ALL and VALUES in CONCATENATEX DAX FUNCLIONccoeeiiiieeiieeeeeee e, 19
ALLSELECTED Function to get a Filtered Grand Total.......ccoocioiiiiiececcccccceeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e e e 20
ALLEXCEPT FUNCEION ... eaaaaaaaaaesaaaaaeaaaaeasaneens 20
FILTER @nd CALCULATETABLE fUNCHIONS .. iuitttiieitieee ettt ettt ettt e e sttt e e sttt e e s aabeeeesenbeeeeesabaeeeseneneeeenee 20
Examples of CALCULATE to Change Filter Context for Various % of Total Calculationscccccevvvvciiiieeeee e, 21
Time Intelligence Functions such as SAMEPERIODLASTYEAR.......ccooi i, 22
1 (VT To 1o o TR PO TP PPPPPOPPPPPN 23
HASONEVALUE fUNCEION 1.ttt ettt ettt e ettt e e bt e e e e s bttt e e s eabbe e e e ebbeeeeeanbbeeeeanbeeeeseanbaeeenanns 23

Page 1 of 50

YOY % Change DAX Formula and Report from above formula........ccooooooiiioiiiiiiicieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 23
YOY % Change FOrmula FOr Partial Year Datai......cccccuiiieiiie ettt e e et e e e e e e e s abaaae e e e e e e e s snsaabaeeeaeeeeens 24
B0OIEaN FIlters iN CALCULATE.eiiiiiiie ettt e e e ettt e e e e s sttt e e e e e e s abb b beeeeeeeesannbbbeeeeeeesssassnbbbbaaeaessssnnnsnreneees 24
Overwrite Operation in CALCULATE fUNCHION......uiii ittt ettt ettt e s st e e s st e e e sabeeeessabraeesssabteeessnnreas 25
Boolean Filter Behinds Scenes Runs as a FILTER and ALL Function CONStructionc.ccceeeeiiiiieiiniiieeeeniieee e 25
KEEPFILTERS Function to Perform AND Logical Test Rather Then An Overwrite Operation in CALCULATEccccce..... 26
FILTER and VALUES Functions to SIMULATE KEEPFILTER RESUIL.........uvtiiiiiiiiiiiiiiieeee ettt seiiereee e e e e s e s siiereee s 26
LOZICAl OPEIAtOrS IN DAX: ... i e aaaaaaaaaans 27
AND Logical Test with Two Filter Arguments in CALCULATE fUNCLION c...coeieeeiiee e 28
OR Logical Test iN CALCULATE fUNCHION.uuutiiiiiiiitiiiittitiitiseteterereeereeeeeeeererararererraa.——————————————..nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 28
KEEPFILTERS to Create Filtered REPOItS.....ccceeeeeee e, 29
OR Logical Test for List of Items using IN Operator in CALCULATE fUNCLIONuuuuiiiiiiiiiiiiiiiiiii e 29
NOT Logical Test in CALCULATE Function to Filter to Items NOTIN List.........cccooeiiiiiiiiiie, 29
CALCULATE to perform ConteXt TranSitioNuuuuuieiiiiiriiiiiiiiieieiieieeeeeereeererereererar.r....——————————.——.............——————————————oooo.. 30
When Context Transition Causes Trouble: Context Transition for a Measure Over a Table with Duplicate Records...... 32
Rule for When to Use Context TranSitioN:.......ccouiuuiei ittt ettt ettt ettt ettt e e sttt e e s s bbeeesssabbeeesssbeeessanbaeeenans 33
12 Month Moving Average DAX Formula and REPOIt..........coooeiiiiii i 33
Moving 12 Month Average Formula For Partial Year Data:oocciiiiiiieiiiiiiiiieeee ettt e e e e 34
(070] 010 o] [N 211 L (T TP PP PP UPPRPPPTPPON 34
CROSSJOIN DAX Table FUNCHION ...ttt ettt ettt e e ettt e e e ettt e e e e abt e e e s aabeeeeeenbeeeeeanbeeeesanneeeeesnnenas 34
Star Schema Data Model and Expanded Table Diagrami:...........uuuuuiiuiiiiiiiiiiiiiieieiieeieereeeeneeeeaeeee.—————————————————————————————————. 36
Table Filter To Go Backwards Across Many-To-One Relationship ..., 37
DAX Formula Evaluation Context SUMMAIYccooeeeii i 38
Calculating Averages at Different Grains and with Different FOrmulas..............coouuuiiiiiiiiiii e 38
Average Transactional / Daily / Monthly Sales By Product DAX FOrMUIS:......c.ueieiiiireeeeiireeeeenireeeeeeireeeeesvreeeeerreeeeeeans 40
Unmatched Itemsin a Relationshipccoooiieiiiiie e, 41
Date Table with the DAX functions GENERATE @Nd ROWciiiiiiiiiiiiiiet ettt ettt e sttt e e st e e s e nbae e e 42
Using the DISTINCTCOUNT and DIVIDE DAX Functions for faster calculating average........ccccccceeeveecciiieeeeee e, 44
Cardinality of Tables in [terator FUNCLIONSuiiiiiiiiiiiiiiiiiiiiieiiiiiiieireaeeereraaeeeaereeeaeeaaaae—aeaaaaaaraaaaaessansansnssnnnnnnnnnnnnnnnnnnn 44
Approximate Match LOOKUP WIth DAX:.......eeeiiii ettt e e e e e e e e ettt r e e e e e e s e sansstaeeeeeeeessannnsrneeaeeesanns 45
ADDCOLUMNS and SELECTCOLUMNS DAX Table FUNCLIONSuuiiiiiiiiiiiiiiitiiee ettt ee e e e e e e 46
DAY) {0 o [o J P PP TSP PP OPPPPPTOPPPPPRRNt 46
Using DAX with Existing Connections feature to extract Data From Data Model into Worksheet 48

Page 2 of 50

What is DAX?

e DAX = Data Analysis eXpressions, where eXpression is a synonym for formula.
e DAX Formulas are created in the Data Model in Power Pivot and Power BI.
e DAX formulas are programmed to work efficiently with big data and can significantly reduce the number of
intermediate steps in complex calculations by creating columns and tables within formulas at the correct grain.
e DAX includes many functions that are almost identical to Excel worksheet functions, such as SUM, AVERAGE, and
EOMONTH, as well as functions that are unique to DAX, such as RELATED, SUMX, and CALCULATE.
e 4 Main Advantages of DAX Formulas:
1. Measures are reusable, preformatted, metric-in-nature, aggregate formulas that you can drag and drop
into Excel PivotTables/Charts and Power Bl Visuals: create, format, then use over and over.
2. DAXformulas are specifically designed to work with the compressed data from the Data Model
columnar database to calculate much more quickly over big data than many other tools.
3. There are many more functions available in the DAX formula language than there are in a Standard
PivotTable; there are more than 250 DAX functions.
4. The DAX formula language makes it easy and efficient to use tables with different granularities within a
formula, which can reduce the number of intermediate steps in a complex calculation.

Data Model Components

e A Data Model is the source data and metrics for reporting and visuals in Excel Power Pivot and Power BI.
e Data Model Components:
1. In-RAM Columnar Database:
= When you load Power Query generated tables to the Data Model, the data is compressed and
stored in an efficient structure with a small file size in the behind-the-scenes columnar database.
The columnar database works with DAX formulas to efficiently work with big data.
2. Relationships Between Related Tables:
= Relationships are created between related tables and have these characteristics:

1. They can replace worksheet lookup formulas.

2. They allow you to drag & drop fields from multiple tables into Excel PivotTables and
Power Bl Visuals.

3. Relationships pass filters from dimension tables to fact tables and thereby filter the fact
tables and reduce the number of rows that formula must iterate over.

= Types of Relationships:

1. One-to- many relationship, where the primary key in the dimension table represents the
one-side, and the foreign key in the fact table represents the many-side. Like with the
relationship between a fact table & dimension table product field.

2. Many-to-many relationship, where both columns can have duplicate values. Like with
the relationship between a sales order fact tables and an invoice fact table, where an
order can show up on many invoices, and an invoice can contain many orders.

3. One-to-one relationship: In this type of relationship, each column contains a unique list.
Like with a company car issued to an employee or student IDs issued to a student.

3. Three Types of DAX Formulas
1. DAX Calculated Columns
2. Measures
3. DAX Table Functions/Formulas
4. Hidden Columns or Tables.
= Columns of raw data and columns /tables that serve as intermediate steps in calculation
process, but that are not needed in report area should be hidden.

Page 3 of 50

Star Schema Data Model

e A Star Schema Data Model contains one fact table along with one or more dimension tables, relationships
between the tables and premade reusable formulas. DAX Formulas and the columnar database are designed to
work efficiently with a Star Schema Data Model Design.

1. Fact table: A fact table contains the data that you want to summarize or measure (such as sales
amounts or units sold). Fact tables usually contain foreign keys that connect through a one-to-many
relationships to a primary key in the dimension tables. Fact tables can sometimes be very large; they
may contain 100,000 rows, 1 million rows, or even 100 million rows or more.

2. Dimension table (lookup table): A dimension table contains a primary key field with a unique list of
entities/elements (such as product IDs) with attributes in subsequent fields for dragging into report or
visuals to make conditional calculations (such as product names) or lookup items (such as product
prices). Dimension tables are usually much smaller than fact tables.

o Examples:

e We will use this data model for most of the calculations in the video. This Data Model can be found in the files
named “16-M365ExcelClassStart.xlsx” and “16-M365ExcelClassStart.pbix” (there are finished files also).

Excel Power Pivot:

@ dProduct
M dDate
 Date [fsales
M Products
M Year
1 —
Category
Month o M Supplier
El EOMonth - W
1 T COGS
M LineSales -t
10 SalesTwoStep
10 saleDnesStep M dsalesReps
T2 Al
I AveXF —
= SalesRep
14 Aved 1 I Regio
Fhon
Power Bl Desktop:
o E dProduct o
B aoue oi B <

- E dSalesReps A

Page 4 of 50

Columnar Database

e This database was specifically designed by Microsoft to work efficiently with big data for data analysis and is part
of the Data Model tool.

e A columnar database is a special type of behind-the-scenes data storage location that is loaded into random
access memory (RAM) when you open an Excel or Power BI file.

e A columnar database compresses the data into a smaller size and stores the data one column at a time (hence
the “columnar” name).

e For each column of data that is stored, the columnar database stores a unique list of items.

e The more unique items in any given column, the larger the size of the stored column in the database.

e The database also stores a type of mapping that allows it to reconstruct records of data from the columnar
database when a DAX formula makes its calculation.

Original Table with 606 records:
How Columnar Database compresses tables of data:
3/19/2021 2 4 80 |Records in original table: 606
4/8/2021 2 4 5| |#Columns: 4
4/12/2021 2 4 88 |[Total cells with data: 606*4 = 2424
4/12/2021 2 4 70
4/22/2021 2 4 6 |Total cells in columnar database: 426 +4+4 + 187 = 621
5/12/2021 2 4
5/24/2021 2 4 1 Unique counts for each column:
6/11/2021 2 4 92
6/11/2021 2 4 91
6/17/2021 2 4 209 426 4 1 187
7/5/2021 2 4 91
7/18/2021 2 4 66
7/20/2021 2 4 110 3/19/2021 2 4 80

Types of DAX Formulas

e DAX Calculated Columns: Formula columns added to a table in the Data Model. Like a Sales column
(intermediate step before a DAX Measure aggregates) or Year/Month column (attribute field use in reports and
visuals). The data created from the formula is stored in the columnar database. Calculated columns are
evaluated (calculated) when the columnar database is refreshed.

o DAX Measures: Reusable, preformatted, aggregate formulas that can be used in reports, visuals, and other
areas in the Data Model. Like a Sum or an Average. Measures have ability to work with big data, make complex
calculations in less complicated ways. The data created inside the formula is NOT stored in the columnar
database. Measures are evaluated (calculated) when they are dropped into a report or visual or when conditions
or criteria are changed for the report or visual.

e DAX Table Formulas: These formulas create tables.

o In Power Pivot you can use DAX Tables in other formulas, like using VALUES in the SUMX function.
o InPower Bl you can use DAX Tables in other formulas or you can created tables and store them in the
Data Model.

Page 5 of 50

DAX User Interface in Excel Power Pivot

1) Create DAX Formulas in Data View

=

T SREPR——
_ & & | Al DAY formulas typed out In s i wy
L T ’::':'f:«" formula bar . }- e -
P 3 B e r Button to
i - '\ DAX Data View show
= : Calculated Columns to create Maasure
- 2 are created using DAX Formulas Grid
151 : Iuldd cﬂlll..l mmn
o] §
fUnits —1 .| DAX Measures are created — d1
ab using the Measure Grid ull Up oF down
,"! Measure Grid show more rows
P et in Measure Grid

2) Calculated Columns are added to tables

Clipaad

Deigh

Aivanied

Get Exbemal IData

Double-click
Add Column and
type new field name

3) Measures are created in Measure Grid below Table

[Eales (510 -

o | Toaal Sales [She=Suni[ivemc]Sales | S]]

In the measure grid,
the DAX formula

¥
¥’| shows the grand

1083 L3 7.7
10655 E] ES.ES
iTs cc] i

bl Sailes (S 3906

overall total

4) For Measure, add Number Formatting & check result in Measure Grid

T

i Toosl Lule (5]:e

il fprars] fales |51

d B] —
I 7
(] & Fremspig v
10]
Caagar;
L 2 e | LT Tl P
[t]
‘ol Sk 15]: 37928 E—;"" Cacomal placas
TRUE F a3 = Uy 100G e
[=] o=

Page 6 of 50

DAX User Interface in Power Bl Desktop

1) Create DAX Formulas in Data View

Hoara
By

: B —

e

Firidu

Click Data View,

select fUnits table in Figlds pane,
click New Measure in Calculations group

2) Create Formulas in Formula Bar (both Calculated Columns and Measures)

4) Check Formula Result in Card in Report View

Ina Card in Report Area Kt
with no filter, the grand
over total is shown Y

5) You can also create Measures in Report View and Test them in a Table visual:

Home Tab, Calculations Group, New Measure ;

a

Fartal PREOTE bt #1 888.00

Ll

B Right-click Table ,
& Mew Measure

| |
B

AL [FTIEY

Page 7 of 50

DAX Fundamentals

For most of the examples in the video, we will use in the files named “16-M365ExcelClassStart.xIsx” and “16-
M365ExcelClassStart.pbix” (there are finished files also).You can open these and follow along.

Calculated Columns

Calculated Columns are like Custom Columns in Power Query or Table Columns in Excel Tables, where you use a
formula to add data to a table such as a sales amount in a fact table or a date attribute like month in a date
dimension table.

The data is stored in the In-RAM columnar database and the column is evaluated (calculated) when you create
them and when you refresh the table.

In Power Pivot and Power BI, you create Calculated Columns in Data View. The picture below shows a Calculated
Column for Line Sales.

When you create a Calculated Column, there are no cell references like there are in the worksheet. Instead, you
use column references, similar to a column reference in an Excel table, like [@UnitsSold], or the each keyword
and column references in Power Query, like each [UnitsSold].

Types of Calculated Columns: 1) Table record amounts that will be aggregated used in other formulas, 2)
Dimension Table attribute columns, 3) Helper Columns to make Measures less complicated

Excel Power Pivot:

[t

[LineSalges] -

[x |[=RELATED{dProduct[RetailPrice]) *fSales[UnitsSold]

ProductiD L ﬂ SalesReplD l"-ﬂ UnitsSold ﬂ LineSales |~
| 3691.3 |
3691.8

Power Bl Desktop:

1 LineSales = RELATE Z-{:?"cdu::[Eetailprice:}'-‘S.a:cs:Llﬁius-:l:II

X

11/10/2017 i 1 a4 360918
o 10/27/2017 I 1 84 3691.8
RELATED DAX function

When you have a one-to-many relationship between a fact table and a dimension table, you can use the
RELATED function on the fact table many-side to perform an exact match lookup.

Because there is a relationship, the only input needed is the reference to the column in the dimension table that
has the value you want to retrieve. As shown in the above picture, to lookup a product price, all the REALTED
function needs is the price column reference.

Row Context

In a DAX calculated column, the formula automatically picks out the correct row value in each row by using
something called row context.

In DAX formulas, row context is automatically generated when you use calculated columns or when you use
iterator functions such as the SUMX or FILTER.

In the above picture, row context allows the formula to pick out the correct units in each row and allows the
RELATED function to pick out the correct ProductID to lookup the product price.

Page 8 of 50

Measures

Measures are reusable, pre-formatted, aggregate / scalar formulas that you use in PivotTable Reports,
PivotCharts, Power Bl Visuals and in other DAX formulas.

The data that is created in a Measure is not stored in the In-RAM columnar database, but instead it is calculated
each time you use the Measure or change the conditions or filters in a report or visual.

As shown below, in Power Pivot you create Measures in the Measure Grid below tables that are shown in Data
View. When you create a Measure in Power Pivot the assignment operator is := (colon, equal sign). The
convention is: MeasureName : = Formula. In Excel Power Pivot, Measures can also be created in the Measures
dialog box in the Excel worksheet area.

As shown below, in Power Bl, you select a table in Report view or Data view, right-click the table, point to New
Measure, then create formula in formula bar. When you create a Measure in Power Bl the assighnment operator
is = (equal sign). The convention is: MeasureName = Formula. In Report View, you can use a card visual to check
the result.

Excel Power Pivot:

3

3

[UnitsSold] ~ [v SalesTwoStep:=SUM(fSales[LineSales])

Date B B8 Productip & EB| salesRepiD & B8| UnitsSold B3| Linesales

3691.8

3691.8
2691 8

IsalesTwoStep: 5,698,616,780.70 |

Power Bl Desktop:

(0ol
i3

E-E

X v |1 SalesTwoStep = SUM(fSales[LineSales])
m I

5.698,616,780.70
SalesTwoStep

Page 9 of 50

Filter Context

When you drop the Measure into a PivotTable or Power Bl Visual, the same Measure works in every cell, but the
conditions and criteria from the report or visual filter the fact table down to just the rows that match the conditions and
criteria, as shown here:

Products 1| SalesTwoStep

Aspen 253,016,877.15 SalesTwaoStep:=SUM(fSales[LineSales])
Beaut 347,103,792.90 SalesTwoStep:=SUM|(fSales[LineSales])
Bellen 253,361,736.05 SalesTwaoStep:=SUM(fSales[LineSales])
Carlota 253,820,067.55 SalesTwoStep:=SUM(fSales[LineSales])
Yanaki 848,229,570.30 SalesTwoStep:=SUM(fSales[LineSales])
Grand Total 1,955,532,043.95 SalesTwaStep:=SUM(fSales[LineSales])

Same Measure in every cell, but in this cell, filter context causes the fact table to be filtered down to
just the rows for Aspen, then the Measure makes its calculation. The Measure does not have to work
over the whole fact table, just the Aspen records: this helps the formula to calculate quickly.

Filter context allows DAX measures that are used in a PivotTable, PivotChart, or Power Bl visualization to automatically
use the conditions and criteria in the Rows, Columns, or Filters areas to make conditional calculations. This is the context
part, where the DAX measure can see the surrounding situation and pick out all the conditions in the context of the
report or visualization. In addition, when the behind-the-scenes Data Model engine evaluates the DAX context, it does
not use the full fact table but instead uses only rows that match the conditions. This is the filter part, as the underlying
tables are filtered down to a smaller size so that the formula has less work to perform and can make the calculation
more quickly.

Putting it all together, filter context for DAX measures works as follows:

1.

vk wnN

When a DAX measure is dropped into a PivotTable, PivotChart, or Power Bl visualization, the measure
automatically detects all the external row, column, and filter conditions. For any given cell, the row, column, and
any filters determine the measure’s current external filter context. If there are conditions or filters internally
inside the Measure, the external and internal filters are merged to get the final filter context (conditions for
filtering the fact table).

The dimension table is filtered down to a smaller size, based on the final filter context.

The relationship transfers the filters to the fact table.

The fact table is filtered down to a smaller size, based on the conditions from the final filter context.

The DAX measure works with the filtered fact table so that the formula has less work to perform and can make
the calculation more quickly.

Page 10 of 50

Visual of the Filter Context:

1) Before Measure calculates in "Aspen" both tables have all rows showing

Fact Table = fSales = 2,204,103 Rows Dimension Table = dProduct =16 Rows
* Many 1
ProductiD B8 Products B3 RetailPrice B2 Category | Supplier
12/28/2017 1 2 7 1 Quad 43.95 Freestyle Gel Boomerangs
1/18/2017 7 4 95 2 Yanaki 25.95 Beginner Colorado Boomerangs
10/12/2017 12 2 72 3 Eagle 19.95 Advanced Channel Craft
12/12/2017 1 4 Bellen 24.95 Beginner Gel Boomerangs
11/9/2017 6 15 6 5 Aspen 24.95 Beginner Colorado Boomerangs
1/24/2017 7 1 72 6 Carlota 24.95 Freestyle Gel Boomerangs

2) Row condition "Aspen" flows into Measure and filters the dimenstion table

Fact Table = fSales = 2,204,103 Rows Dimension Table = dProduct =1 Row
* Many 1
B2 productip B4 salesRepiD B Unitssold K4 ProductiD B Products B RetailPrice B8 category B supplier
12/28/2017 1 2 7 5 Aspen 24.95 Beginner Colorado Boomerangs
1/18/2017 7 4 95
10/12/2017 12 2 72
12/12/2017 1 1 4

3) Row condition "Aspen" flows across the relationship and filters the fact table

Fact Table = fSales = 110,185 Rows Dimension Table = dProduct =1 Row

LRELEREgLSg A

pate Kd productip EJ salesrepiD B3 unitssold E3 ProductiD §J Products B Retailprice B category Bd supplier

11/20/2017 5 4 216 5 Aspen 24,95 Beginner Colorado Boomerangs
12/2/2017 3 15 164
3/20/2017 5 3 8
3/21/2017 3 3 ili]
5/12/2017 5 21 24n

Page 11 of 50

COUNTROWS DAX Function is a Super Charged COUNTIFS Function

The next calculation task is to count how many transactions there are for each product; this is a frequency calculation.
To do such a calculation using worksheet formulas, you would have to use a formula like
COUNTIFS(fTransactions[Product],B2), where you specify the product column and the specific product to count. Then, if
you wanted a new formula to count the number of transactions for a different column, you would have to create a new
formula based on the new column, such as this formula to count the number of transactions by category:
COUNTIFS(fTransactions[Category],B2).

With DAX formulas, you can build a single frequency formula that will work on any set of conditions. To do so, you use
the COUNTROWS DAX function, which counts the number of rows in a table based on the current filter context. In a star
schema data model, if you use the fact table inside COUNTROWS, the formula will count records in the fact table based
on any condition. This makes a formula like COUNTROWS(FactTable) a one-stop-shopping frequency formula that can be
used to count based on any set of conditions. This is an example of a DAX formula that is much easier to create and use
than worksheet formulas or other tools. Here is an Example from Power Bl Desktop and Power Pivot:

Power Bl: Power Pivot:

1 Count = COUNTROWS(fSales) fx |Count:=COUNTROWS(fSales)
Products Count Productsy Count
Aspen 110.885 Aspen 110,885 «== Fact Table filtered down to 110885 rows, and COUNTROWS counts rows!
Beaut 104‘836 Beaut 104,836 4= Fact Table filtered down to 104836 rows, and COUNTROWS counts rows!
Bellen 110787 Bellen 110,787 <= Fact Table filtered down to 110787 rows, and COUNTROWS counts rows!
Carlota 110.919 Carlota 110,919 <= Fact Table filtered down to 110919 rows, and COUNTROWS counts rows!
Yanaki 355217 Yanaki 355,217 <= Fact Table filtered down to 355217 rows, and COUNTROWS counts rows!
Total 792,644 Grand Toti 792,644 <= Fact Table filtered down to 792644 rows, and COUNTROWS counts rows!

Implicit Measures vs. Explicit Measures

When you drag a field from a table into the Values area of a Data Model PivotTable or a visual in Power Bl, a read-only
measure is created and stored in a hidden behind-the-scenes location. Microsoft calls this hidden measure an Implicit
Measure. When you author your own measure, as you did with the Total Sales ($) measure, Microsoft calls that an
Explicit Measure. Implicit measures can sometimes get the right calculation results, but they do so in an inefficient way.
Implicit Measures have several drawbacks, including:

e By default, implicit measures are hidden in the Data Model.

e The measures do not appear in the PivotTable Fields task pane or Power Bl Data task pane, and therefore you
cannot reuse them in other reports or visuals.

e You cannot edit the name or the formula part of an implicit measure.

e You cannot attach number formatting to an implicit measure. (However, you can manually add number
formatting in the report or chart.)

e When you create multiple implicit measures in a data model, duplicate or unnecessary implicit measures may be
created.

e This issue has been fixed, but it used to be a problem: If you upload finished Excel or Power Bl Desktop file to
Power Bl Online, Implicit Measures will not show up in the Data Model or any reports or visuals that you
created. Now, the implicit Measures seem to show up when you upload an Excel file.

When you create an Explicit Measure, you have complete control of the formula in the measure: You can edit the name,
edit the formula, add number formatting to the formula, use the formula over and over, and share your data model
online.

Page 12 of 50

It is important to know how to look for and delete implicit measures because you may at times accidentally drag fields to
the Values area of the PivotTable Fields task pane or inherent a Data Model PivotTable that contains implicit measures.
To show implicit Measures in Excel Power Pivot you can use the Show Implicit Measures button in the Advanced tab in
the Power Pivot for Excel ribbon, as shown below. In Power Bl Desktop, | do not know a way to show Implicit Measures.

A B C D E - G H
! PivotTable Fields R
2 | |Products .rlSaIesTwc:Steps CountTransactions Sum of LineSales aetve Al
3 Aspen 253,016,877.15 110,885 253016877.1 _
4 Beaut 347,103,792.90 104,836 347103792.9 coeiedteeddiomsen
5 Bellen 253,361,736.05 110,787 253361736 | Search /O|
6 Carlota 253,820,067.55 110,919 253820067.5 [gprodect
7 Yanaki 848,229,570.30 355,217 8482295703 | =i,
8 Grand Total 1,955,532,043.95 792,644 1955532044 LineSales
9 _fx lesTwoSteps
10 Jx CAuntTransactions
iy Do NOT drag fields to I
Drag fields b NO I
:§ Values areao Filters Columns
. - > Values v
14 This action creates:
15
16 Rows Z Values
17 Products - SalesTwoSteps -
CountTransactions >
L I Surmn of LineSales e
19
20 [] Defer Layout Update
‘lﬁi | x ™ &9 v - | Power Pivot for Excel - 06-TryApril1 7TForVideoPlan
File Home Design Advanced
E Select: <Default= m D Data Category ,;]l
Create and Show Implicit| Summarize Default Table Synonyms
Manage Measures By Field Set Behavior
Perspecti Reporting Properties Language
of LineSales:=SUM('fSales'[LineSales])
Show _
Implicit Implicit Measure is Read Only
SalesTwoSteps: 5,698,616,780.70
Measures CountTransactions: 2,204,103 x
|sum of LineSales: 5698616780.69399 |

Case Where Implicit Measures Might Be OK

If you have some Big Data in a Flat Table (all attribute fields in Fact Table rather than a Dimension Table) that will not fit
into worksheet, and your calculations are simple, such as adding, counting or percentage calculations, then it can be fast
and easy to use implicit Measures. After loading the table to the Data Model, you can drag and drop raw data fields into
Values Area of PivotTable to create implicit Measures. As a second option for this scenario, if you load the Big Data Flat
Table directly to the PivotTable cache and use the Standard PivotTable Calculations (this avoids creating Implicit
Measures)

Page 13 of 50

SUMKX and Iterator Functions

In the previous example, we used a two-step process to get total sales by building two formulas:

e DAX calculated column: Line Sales =RELATED(dProduct[RetailPrice])*fSales[UnitsSold]

e DAX measure: SalesTwoStep:=SUM|(fSales[LineSales])
The goal was to calculate the transactional sales amounts for each row in the fact table and then aggregate those
numbers into a total. But with the DAX formula language, you can skip over this two-step process and create a single
DAX measure that combines the calculated column and the aggregating measure into one DAX measure. You can do this
by using one of the amazing DAX X iterator functions: SUMX, AVERAGEX, COUNTX, COUNTAX, MINX, MAXX,
CONCATENATEX, PRODUCTX, or RANKX. (There are other types of DAX iterator functions, like FILTER, ADDCOLUMNS and
SELECTCOLUMNS too)

To make a calculation in each row of a fact table and then sum those results, you can use the SUMX iterator function,
which has the following syntax:

=SUMX(table, expression)
This function simulates a calculated column inside a measure, iterating over each row in the specified table to create the
values and then uses the values generated to make the aggregate calculation.

You can often simply take the formula you would have used in a calculated column and place it into an X iterator
function to create a one-step solution, like this:

[UnitsSold] - [x |5alesOnestep:=5UMX(fSales, RELATED{dProduct[RetailPrice]) *f5ales[Units5old])

m Prod... B B8 salesk... % B Unitssold
1 3091.8
2 3691.8
3 N7 /5

SalesTwoSteps: 5,698,616,780.70

CountTransactions: 2,204,103

Sum of LineSales: 5698616780.69999 '
[salesOnestep: 5,638,616,730.70 |

In the first argument (the table argument), you place the table where you want to make a row-by-row calculation— in
this case, fSales. In the second argument (the expression argument), you place the formula that you want to iterate
down the table to make a calculation in each row—in this case, RELATED(dProduct[RetailPrice])*fSales[UnitsSold].

Row Context in lterator functions

The amazing thing about SUMX and the other X iterator functions is that they automatically create row context so that
the formula can use the values from each row in the first argument table and so the RELATED function can look up the
price for each row in the table. This single SUMX formula is a more compact solution than the Data Model two-step
process with a calculated column and a measure, and it is more efficient than the worksheet formula and standard
PivotTable method, where you have to create the Excel Table calculated column using the XLOOKUP function and then
do a standard PivotTable calculation.

Page 14 of 50

Two Step and One Step Measures

A Two Step Measure is created when you use a Measure to aggregate the results from a Calculated Column

A One Step Measure is created when you use an X Iterator function to create the intermediate values that would
have been created in a Calculates Column before aggregating with functions like SUMX, COUNTX and
AVERAGEX.

Both the one step and two step methods will yield the same result, as shown here:

Products SaleOneStep SalesTwoStep

Aspen 253,016,877.15 253,016877.15
Beaut 347,103,792.90 347,103,792.90
Bellen 253,361,736.05 253,361,736.05
Carlota 253,820,067.55 253,820,067.55
Yanaki 848,229,570.30 848 228 570.30
Total 1,955,532,043.95 1,955,532,043.95

Characteristics of two methods:

Two-step method: With the two-step method, the values generated by the calculated column are stored in
the columnar database & become part of what is stored in RAM. This increases file size. When you refresh the
table, either in the Power Pivot for Excel window or in Power Query, the calculated column values are
recalculated.

1. DAX calculated column: Line Sales =RELATED(dProduct[RetailPrice])*fSales[UnitsSold]
2. DAX measure: SalesTwoStep:=SUM(fSales[LineSales])

One-step method: With the one-step method, the values that are generated inside the SUMX function are not
stored in RAM. The values in the SUMX function are recalculated each time you drop the measure into the
report/visual or when a condition is changed in the Rows, Columns, or Filters area of the report/visual.

1. SalesOneStep:=SUMX(fSales,RELATED(dProduct[RetailPrice])*fSales[UnitsSold])

When building DAX measures in the Data Model. the convention is to use the one-step method because the measure
can be created more quickly, and the in-RAM database does not have to store as much data. As the great DAX formula
masters Marco Russo and Alberto Ferrari say, for most models under 100 million rows of data with simple calculations,
either method will work fine, and so it becomes a matter of preference whether to use the two-step method or the one-
step method. However, my rule of thumb is that if an X iterator Measure calculates slowly every time you drop it into a
report/visual, it might be better to move the calculation back to a calculated column (keeping in mind that other issues
might cause slowness such as unnecessary content transition over a fact table).

Page 15 of 50

Understanding How Filter Context and Row Context Work Together

When you use an X iterator function such as SUMX in a measure and then drop it into a report or a visual, filter context
and row context work together to make the final calculation. As shown in the figure below, when the SUMX measure is
in the Aspen cell, the Aspen filter context filters the fUnits table in the first argument of the SUMX function down to
110,185 rows. Then, the SUMX function’s row context allows the formula in the second argument to make the
calculation row by row, pulling out the correct units sold, looking up the correct product price, and finally multiplying the
amounts to get the transaction sales amount for each row. Once SUMX has created all the transactional sales amounts
for Aspen, then it adds to get a total of 253,016,877.15 and delivers the result to the Apsen cell in the PivotTable. The
Measure does uses this process for each row in the report to get the correct sales amount for each product.

fSales is filtered down to 110,185 Rows

1) Measure creates Aspen Filter Context
& causes fSales in 1st argument of

Nate - [l

SUMX to be filtered down to only 11/20/2017 5 4 216
12/2f2017 5 15 164
Pn}i:lud:s/v SalesTwoStep :
Aspen 253,016,877.15 SaleOneStep::SUI‘m({fSEléE,RELATED{dPrGduct[RetaiIPrice]}*fSaIes[UnitsSold]}
Beaut 347,103,792.90 SaleOneStep:=SUMX(fSales, RELATED|{dProduct[RetailPrice] }*fSales[UnitsSold])
Bellen 253,361,736.05 SaleOneStep:=SUNMX(fSales,RELATED|dProduct[RetailPrice])*fSales[UnitsSold])
Carlota 253,820,067.55 SaleOneStep:=SUMX(fSales,RELATED|{dProduct[RetailPrice])*fSales[UnitsSold])
Yanaki 848,229,570.30 SaleOneStep:=SUMX(fSales, RELATED{dProduct[RetailPrice])*fSales[UnitsSold])

Grand Total 5,698,616,780.70

2) SUMX creates Row Context for each row in fSales to get the row values for Price & Units Sold

= bl Prog

11/20/2017

5 4= RELATED(dProduct[RetailPrice])*fSales[UnitsSold] = 216 * 24.95 =53839.2
12/2/2017 5 15 164 #== RELATED(dProduct[RetailPrice])*fSales[UnitsSold] =164 * 24.95 =4091.8
3/20/2017 5 3 8§ = RELATED{dProduct[RetailPrice]}*fSales[UnitsSold] =8 * 24.95=199.6
3/21/2017 5 3 60 = RELATED(dProduct[RetailPrice]}*fSales[UnitsSold] =60 * 24,95 = 1497

I &

SaIeOneStep:=SUI‘v1>C|{fSa|ESIRELATED|{dProduct[RetailPrice]}*fSaIes[UnitsSold]

3) SUMX adds all 110,185 numbers: 5389.2 + 4091.8 + 199.6 + 1497... = 253,016,877.15

Gross Profit

Gross profit is a metric that assesses how well a company can manage the variable production and labor costs that go
into producing a product or service. The formula for the gross profit calculation is:

Gross Profit = Total Sales — Total COGS

Gross profit tells you how much of the total sales is left over after subtracting all the variable production costs, which
can then be used to cover fixed costs (such as rent, utilities, and administrative costs) and profit for the company. For a
boomerang manufacturing company, total sales would be the revenue brought in from selling the finished boomerang
products, and COGS (cost of goods sold) would be the variable costs incurred from producing the boomerangs, such as
wood, paint, labor to make the boomerangs, packaging, and other costs that went into producing the boomerangs. The
formula for the percentage of gross profit calculation is:

% Gross Profit = Total Gross Profit/Total Sales

Page 16 of 50

The percentage of gross profit expresses the number of pennies for every one dollar of sales that can be used to cover
fixed costs and profit. For a manufacturer, this is an important metric that indicates the health of the company. If the
percentage of gross profit is increasing over time, it can indicate that the company is managing variable product costs
well and that profit may be going up. If this metric goes down over time, it may indicate that the costs of production are
increasing and that profits may be lower.

Using Measures in Other DAX Formulas

The conventions for referring to Measures or table columns in formulas is as follows:

e When you use Measures in other DAX Formulas you type square brackets around the Measure name, like:
[MeasureName]

e When you use a column reference in DAX Formulas you type table name and then in square brackets you type
the column name, like: TableName[ColumnName]

| created these two Measures:

e TotalSales:=SUMX(fSales,RELATED(dProduct[RetailPrice])*fSales[UnitsSold])
e TotalCOGS:=SUM(fSales[COGS])

To create a Measure for Gross Profit, we can use the two measures in a new Measure, as shown below:

Excel Power Pivot:
[Unitssold] - _f'r'Grnsstfit:=[TctaISales]-[TctaICOGS]
! 3691.8 15727
2 3691.8 1572.7
5 2501 2 1572 7
TotalSales: 5,698,616,780.70
TotalCOGS: 2,396,102,293.04
|Grossprofit: 3,302,514,487.66 |
Power Bl Desktop:
X \/ 1 GrossProfit = [TotalSales]-[TotalCDGS]
: I - .
Products TotalSales TotalCOGS GrossProfit
Aspen 253,016,877.15 Q4524809 158,492,068.60
Here is what the 3 Measures look like a PivotTable and a Matrix:
Excel Power Pivot PivotTable: Power Bl Desktop Matrix Visual:
Products - TotalSales TotalCOGS GrossProfit Products TotalSales TotalCOGS GrossProfit
Aspen 253,016,877.15 94,524,808.55 158,492,068.60 I, . 253,016,877.15 94,524,80855 158,492,068.60
Beaut 347,103,792.90 129,753,288.23 217,350,504.67 o 347,103,792.90 129,753,28823 217,350,504.67
Bellen 253,361,736.05 107,342,954.14 146,018,781.91 pejlen 253361,736.05 107,342954.14 146,018,781.91
Carlota 253,820,067.55 103,613,424.02 150,206,643.53 Carlota 253,820,067.55 103,613,424.02 150,206,643.53
Yanaki 848,229,570.30 328,821,091.92 519,408,478.38 Yanaki 848,229,570.30 328,821,091.92 519,408,478.38
Grand Total 1,955,532,043.95 764,055,566.86 1,191,476,477.09 Total 1,955,532,043.95 764,055,566.86 1,191,476,477.09

Page 17 of 50

DIVIDE Function & % Gross Profit

In order to create the % Gross Profit measure, you have to perform division. In the DAX formula language, there is a
built-in function to do this: DIVIDE. The DIVIDE function, which delivers the quotient of two numbers and allows you to
specify an alternative value when the denominator is zero, has the following syntax:

DIVIDE(Numerator, Denominator, [AlternativeResult])

If you omit the third argument, [AlternativeResult], you get a DAX blank value, which is neither an empty cell, as you
might get in the Excel worksheet, nor a null value, as you might get in Power Query, but instead it will show nothing in
the report. The picture below shows how to use the DIVIDE function to calculate % gross Profit in Power Bl Desktop:

>< + |[1 ¥ Gross Profit = I:]'-."]:-E(jﬁ’cs;P’cFit:S:]_.:T:-:-s'.Sa'.es[Ej:)l

5,698,616,780.70 2,396,102,293.04 3,302,514,487.66 37.95%

_
otalSales($) TotalCOGS(%) GrossProfit($) % Gross Profit

L&
L1

CALCULATE Function and Filter Context

The CALCULATE DAX function allows you to change the external filter context (conditions from the Rows area,
Columns area, Filters area, and slicers) for a measure by specifying one or more new internal filters (logical tests
and conditions) inside in the function.

CALCULATE can also convert the row context in a calculated column or a DAX iterator function into filter context
with a process called context transition.

The CALCULATE function arguments are:

CALCULATE(Expression, Filterl, Filter2...)

The Expression argument, which is a required argument, contains the scalar formula for which you want to
change the filter context.
The Filter arguments allow you to specify one or more new internal filters by using:

o A filter modifier function like: ALL, ALLEXCEPT, or ALLSELECTED.

o A Boolean (True/False) formula like: dProduct[Product]="Quad”.

o A DAX table function that defines a valid list of values as a filter like: DATESINPERIOD or the VALUES DAX
function.

When you enter two or more internal filters into the Filter arguments, the filters are run as an AND logical test.
If a field is used in both the external and internal filters, the external filter is removed and replaced with the
internal filter.

o For example, if a measure is in the Aspen product row in a report, and the filter inside CALCULATE is
dProduct[Product]="Quad”, the internal filter dProduct[Product]="Quad” would replace the external
filter dProduct[Product]="Aspen”, and the measure would calculate an amount for the Quad product.

The Filter arguments are not required. If you omit these arguments, CALCULATE will perform context transition
without an internal filter. If you use the Filter arguments and row context is available, external filters, internal
filters, and the transitioned row filters are all merged in an AND logical test.

When all external and internal filters are evaluated by the CALCULATE function, CALCULATE creates the final
filter context by running an AND logical test with all remaining external and internal filters. The final filter
context is used to filter the underlying data model tables so the measure can calculate the formula result.

Page 18 of 50

ALL Function

e The ALL function has two uses:
o It can be used on a single column, multiple columns, or a full table to remove the filter context and
return a table.
= Whenitis used on a table, it removes all filters and returns the full table.
= When used on a column or columns, it returns a unique list of records as a table with a single
blank row if there are unmatched items in the relationship. Columns must be from the same
table.
o When you use it in the CALCULATE function as a filter, such as ALL(), it removes all filters in the data
model. You can also use the ALL function with a columns, columns or a table to remove filters from
specific columns or table.

VALUES Function

e The VALUES function “sees” the current filter context and delivers a unique list as a table for a column, columns
from the same table or a full table. If there are unmatched items in the relationship, it returns a single blank row
to bottom of the unique list.

e Ifthe table returned is a single item, it is returned as a scalar value. We can use VALUES to bring a variable from
a table into a DAX Formula.

ALL and VALUES functions compared

VALUES(Column or Table) ALL(Column or Columns from Same Table or Table)

“Sees” current filter context and delivers a unique list Removes filters and delivers a unique list or table
Don’t want unmatched blank use: DISTINCT Don’t want unmatched blank use: ALLNONBLANKROW

Example of ALL and VALUES in CONCATENATEX DAX Function

This example can be found in the file named “17-VALUES-ALL.xlsx” in the folder named “ExtraSingleExampleFiles”.

= = = ALL Table Function VALUES Table Function
72 MB Sioux Removes filters & "Sees" current filter context &
48 Quad Shihara delivers a unique list delivers a unique list
60 MTA Chantel
60 Quad Shihara
96 FunRang Bob SalesRep |-|ProductsSoldALL ProductsSoldVALUES
132 Quad Shihara Bob FunRang, MB, MTA, Quad FunRang, MTA
36 FunRang Bob Chantel FunRang, MB, MTA, Quad MTA, Quad
24 FunRang Shihara Shihara FunRang, MB, MTA, Quad FunRang, MB, MTA, Quad
144 Quad Chantel Sioux FunRang, MB, MTA, Quad MB
108 MTA Bob Grand Total FunRang, MB, MTA, Quad FunRang, MB, MTA, Quad
96 MB Sioux
96 MTA Shihara ProductsSoldALL:= ProductsSoldVALUES:=
120 Quad Chantel CONCATENATEX(CONCATENATEX(
132 Quad Chantel ALL(fSales[Product]),fSales[Product], |VALUES(fSales[Product]),fSales[Product],
24 MB Sioux
120 MB Shihara , |fSales[Product],ASC) fSales[Product],ASC)

Page 19 of 50

ALLSELECTED Function to get a Filtered Grand Total
e When you use ALLSELECTED() as a filter modifier it removes the row and column filters in a particular PivotTable,
PivotChart or Visual, but retains the other filters in the Data Model. In this way, you can use the ALLSELECTED()

filter modifier to show a filtered grand total amount, which is useful when you want to compare a filtered
number against a filtered grand total.

e However, if you use a measure with ALLSELECTED() in other measures, such as in iterator functions, your
formula will remove the row and column conditions from the table being iterated—rather than removing any
row or column conditions from a given report or visual.

e Microsoft Help: the ALLSELECTED function gets the context that represents all rows and columns in the query,
while keeping explicit filters and contexts other than row and column filters. This function can be used to obtain
visual totals in queries.

ALLEXCEPT Function

ALLEXCEPT allows you to remove filters from a table except for filters on specified columns and then returns a table of
unique records. The columns to exclude can be any column in the Data Model. You cannot use table expressions or
column expressions (formulas) inside the ALLEXCEPT function: only tables and columns.

FILTER and CALCULATETABLE functions

FILTER(Table, Filter) CALCULATETABLE(Table,Filters1, Filter2...)

Iterates Row-By-Row when filtering Uses Data Model Filtering mechanism when
filtering

Filter columns must be from table in 1* argument of FILTER Fact Table can be filtered by any columns in the
Start Schema Data Model

In CALCULATE a Boolean filter is converted to a FILTER & ALL Performs Context Transition if Row Context is

Function formula construction. For example, the Boolean filter available

dProducts[Product]="Quad” is converted to
FILTER(ALL(dProducts[Product]), dProducts[Product]="Quad")
There is only one Filter argument in the FILTER function. For an Multiple Filter arguments that work in an AND
AND Logical Test use Double Ampersand, like: &&. You can use Logical Test. You can use Double Pipe to create an
Double Pipe to create an OR Logical Test, like | |. OR Logical Test, like | |.

e Examples of CALCULATETABLE and the FILTER function (in file named “17-ExtraDAXTablesExample.pbix”):

|I]_|]|] >< \/ 1 QC = CALCULATETABLE[{fSales,dProducts[Product]=" I;La:']l

Date *| S5RID [~ | ProductlD | ~| CustomerlD |~ | Units |~ | Line5ales |~
E 1/21/2027 12:00:00 AM & 2 1 30 1200
Y / |1 OF = FILTER({fSales, fSales[ProductID]=2)
Date ~| 5RID |~ | ProductlD || CustomerlD |~ |/ Units | =| LineSales |~
1/21/2027 12:00:00 AM 4] z 1 30 1290

>< \‘/ 1 QuadAndSiouxF = FILTER(fSales,fSalesz[ProductID]=2 && fSales[SRID]=1)

Date ~ [SRID |~ | ProductlD |~ | CustomerlD |~ | Units |~ | LineSales |~

11/17/2024 12:00:00 AM 1 2 3

[EK]

7 1591

uaclri_arlota = F ales, cles rogauc = ales Foauc =
1 QuadOrCarlotaF = FILTER(fSales,fSzles[ProductID]=2 || fSales[ProductID] =1)

Date | SRID |~ | ProductlD |~ || CustomerlD} [~ | Units | ~| LineSales |~

1/21/2027 12:00:00 AM & 2 1

Lig

0 1290

Page 20 of 50

Examples of CALCULATE to Change Filter Context for Various % of Total Calculations

L0 =l o o

B C D E F G H |] K L
%0fTotal FilteredGrand %0OfFiltered ParentCategory %:ParentCategory ParentCategory Z:ParentCategory
Category * | Products ~ | TotalSales(5) GrandTotalSales Sales TotalSales GrandTotalSales TotalSalesAE TotalSalesAE TotalSalesASY Total5alesASY
= Advanced Eagle 143,602,055.10 5,698,61678070 2.52% 174887191045 11.50% 1,090,011,883 95 13.17% 239,510,211.95 59.96%
Flattop 45,393,738.15 5,698,616,780.70 0.80% 1,248,871,910.45 3.63% 1,090,011,883.95 416% 239,510,211.95 18.85%
Kangaroo 50,514,418.70 5,698,616,78070 0.89% 1,248,871910.45 4.04% 1,090,011,883.95 463% 239,510,211.95 21.09%
Advanced Total 239,510,211.95 5,698,616,780.70 4.20% 1,248.871,910.45 19.18% 1,000,011.883.95 21.97% 239,510.211.85 10:0.00%
= Beginner Aspen 54830,918.40 5,598,516 78070 0.95% 1748871 910.45 439% 1354 608,183.50 405% 295,204,713.15 1B.57%
Bellen 55,295,637.10 5,698,616,78070 0.97% 1,248,871910.45 4.43% 1,354,608,183.50 408% 295,204,213.15 18.73%
Yanaki 185,077,657.65 5,698,61678070 3.25% 1,748,871 91045 14.87% 1,354,608,183.50 13.66% 295,204,213.15 62.69%
Beginner Total 295,204,213.15 5,698,616,780.70 5.18% 1,248,871,910.45 23.64% 1,354,608,183.50 21.79% 295,204,213.15 100.00%
= Competition MaturalElbow 30,103,775.05 5,698,616780.70 0.53% 1,248,871,910.45 241% 693,391,381.45 434% 151,981,953.35 19.81%
Sunset 57,741,915.00 5,698,61678070 1.01% 1,248871010.45 462% 693,391,381.45 £33% 151,081,053.35 37.09%
Sunshine 4417293090 5,698,616,780.70 0.78% 1,248,871,910.45 3.54% 683,391,3B1.45 6.37% 151,981,953.35 29.06%
Vrang 19,363,331.50 5,698,616,780.70 0.35% 1,248,871,910.45 160% 693,391,381.45 2.88% 151,981,953.35 13.14%
Competition Total 151,981,953.35 5,698,616,780.70 2.67% 1,248,871,910.45 12,.17% 693,391,381.45 21.92% 151,981,953.35 10:0.00%
= Freestyle Carlota 55,119,440.20 5,698,616,780.70 0.97% 1,248,871,910.45 441% 1,752,387 854.50 3.15% 383,996,960.35 14.35%
Quad 316,487,905.50 5,698,616780.70 5.55% 1,248,871910.45 25.34% 1,752,387,854.50 18.06% 383,996,960.35 82.47%
TriFly 12,389,614.65 5,608,616780.70 0.22% 1,248,871,910.45 0.99% 1,752,387,854.50 0.71% 383,096,060.35 3.23%
Freestyle Total 383,996,960.35 5.698,616,780.70 6.74% 1,248,871,910.45 30.75% 1,752,387,854.50 21.91% 383,996,960.35 100.00%
= Long Distance Beaut 75,828,205.75 5,698,516,780.70 1.35% 1,248,871910.45 6.15% B08,217,477.30 951% 178,178,571.65 43.12%
Elevate 71,127,614.25 5,698,616,78070 1.25% 1,248,871010.45 5.70% BOB,217.477.30 B.80% 178,178,571.65 39.97%
LongRang 30,222,751.65 5,698,616,780.70 0.53% 1,248,871910.45 242% BOB,217477.30 3.74% 178,17B,571.65 16.96%
Long Distance Total 178,178,571.65 5,698,616,780.70 3.13% 1,248,871,910.45 14.27% BO08,217.477.30 22.05% 178,178,571.65 100.00%
Grand Total 1,248,871,910.45 5,698,616,780.70 21.92% 1,248.871,910.45 100.00% 5,698,616,780.70 21.92% 1,248,871,910.45 100.00%:
TotalSales($):=5UMX(fSales,RELATED{dProduct[RetailPrice]}*fSales[Units5cld])
GrandTotalSales:=CALCULATE([TotalSales(S)].ALL{)} Region = N
% 0fTotalSales:=DIVIDE({[TotalSales($)],[GrandTotalSales]) MW NE

FilteredGrandTotalSales:=CALCULATE([TotalSales($)],ALLSELECTED())
%OfFilteredGrandTotalSales:=DIVIDE([TotalSales($)],[FilteredGrandTotalSales])
ParentCategoryTotalSalesAE:=CALCULATE([TotalSales(5)],ALLEXCEPT(fSales,dProduct][Category]))

%ParentCategoryTotalSalesAE:=DIVIDE([TotalSales($)],[ParentCategoryTotalSalesAE])

ParentCategoryTotalSalesASV:=CALCULATE([TotalSales(5)],ALLSELECTED(),VALUES(dProduct[Category]))
%ParentCategoryTotalSalesASV:=DIVIDE([TotalSales($])],[ParentCategoryTotalSalesASV])

Page 21 of 50

Time Intelligence Functions such as SAMEPERIODLASTYEAR

Time Intelligence functions can be used with a date table to change the filter context. Below is a list of some of these
functions. The Data Table must have all days for all years that span the minimum and maximum years from the dates in
the Fact Table in order for these functions to make correct data calculations.

Function Description

Returns a table that contains a column of dates, shifted either forward or backward in time by

DATEADD the specified number of intervals from the dates in the current context.

Returns a table that contains a column of dates that begins with a specified start date and
DATESBETWEEN continues until a specified end date.

Returns a table that contains a column of dates that begins with a specified start date and
DATESINPERIOD continues for the specified number and type of date intervals.

Returns a table that contains a column of the dates for the month to date, in the current
DATESMTD context.

Returns a table that contains a column of the dates for the quarter to date, in the current
DATESQTD context.

DATESYTD Returns a table that contains a column of the dates for the year to date, in the current context.
ENDOFMOMNTH Returns the last date of the month in the current context for the specified column of dates.
ENDOFQUARTER Returns the last date of the quarter in the current context for the specified column of dates.
ENDOFYEAR Returns the last date of the year in the current context for the specified column of dates.
FIRSTDATE Returns the first date in the current context for the specified column of dates.

Returns the first value in the column, column, filtered by the current context, where the
FIRSTNOMNBLANK expression is not blank.
LASTDATE Returns the last date in the current context for the specified column of dates.

Returns the last value in the column, column, filtered by the current context, where the
LASTNONBLAMNEK gexpression is not blank.

Returns a table that contains a column of all dates from the next day, based on the first date
NEXTDAY specified in the dates column in the current context.

Returns a table that contains a column of all dates from the next month, based on the first
NEXTMOMNTH date in the dates column in the current context.

Returns a table that contains a column of all dates in the next quarter, based on the first date
NEXTQUARTER specified in the dates column, in the current context.

Returns a table that contains a column of all dates in the next year, based on the first date in
NEXTYEAR the dates column, in the current context.

Returns a table that contains a column of dates that represents a period parallel to the dates
in the specified dates column, in the current context, with the dates shifted a number of

PARALLELPERIOD intervals either forward in time or back in time.

Returns a table that contains a column of all dates representing the day that is previous to
PREVIOUSDAY the first date in the dates column, in the current context.

Returns a table that contains a column of all dates from the previcus month, based on the
PREVIOUSMOMNTH first date in the dates column, in the current context.

Returns a table that contains a column of all dates from the previous quarter, based on the
PREVIOUSQUARTER first date in the dates column, in the current context.

Returns a table that contains a column of all dates from the previous year, given the last date
PREVIOUSYEAR in the dates column, in the current context.

Returns a table that contains a column of dates shifted one year back in time from the dates
SAMEPERIODLASTYEAR |in the specified dates column, in the current context.

STARTOFMONTH Returns the first date of the month in the current context for the specified column of dates.
STARTOFQUARTER Returns the first date of the quarter in the current context for the specified column of dates.
STARTOFYEAR Returns the first date of the year in the current context for the specified column of dates.
TOTALMTD Evaluates the value of the expression for the month to date, in the current context.

Evaluates the value of the expression for the dates in the quarter to date, in the current
TOTALOQTD context.
TOTALYTD Evaluates the year-to-date value of the expression in the current context.

Page 22 of 50

IF function

The IF function is the same as in the Excel worksheet, except that if the third argument is omitted, a DAX Blank is used.

HASONEVALUE function

HASONEVALUE is a Boolean DAX function that returns TRUE when a field in the current filter context contains only one
value and FALSE when it contains more than one value. For example, if you use the HASONRVALUE function is a
Year/Month Report, in the January 2018 row, the Year field contains only the 2018 value; in the January 2019 row, the
Year field contains only the 2019 value; and in the 2019 total row, the Year field contains only the 2019 value. It is only
in the grand total cell where the field contains more than one year value: It contains all four years. This function can be
used to prevent a formula from executing in the grand total row.

VAR & RETURN to define Variables in DAX Formula

e You can define a variable in any DAX expression by using VAR followed by RETURN. In one
or several VAR sections, you individually declare the variables needed to compute the
expression; in the RETURN part you provide the expression itself.

e Visual of VAR & RETURN:

Syntax for VAR & RETURN Variables in DAX:

VAR VariableNamel1 = Formulal
VAR VariableName2 = Formula2
VAR VariableName3 = Formula3

RETURR!

Formula that uses DAX Formulas and VAR Variables

Example of YOY % Change DAX Formula:

YOY%Change:= -

VAR LastYear = CALCULATE([TotalSales(S)],SAMEPERIODLASTYEAR(dDate[Date]))
VAR ThisYear = [TotalSales($)]

RETURN

IF(HASONEVALUE(dDate[Year]),DIVIDE(ThisYear -LastYear,LastYear))

YOY % Change DAX Formula and Report from above formula

A B T D E F G H
2 Year -T|Month | ~ | TotalSales($) YOY%Change
3 =/2018 Jan 20,034,332.75 -31.65%
< Feb 18,293,456.50 -30.48%
5 Mar 49,971,855.30 -33.13%
6 Apr 105,595,099.55 -31.70%
7 May 108,295,145.60 -31.15%
8 Jun 47,543,3848.20 -33.79%
9 Jul 19,886,442.25 -31.56%
10 Aug 19,816,735.75 -31.49%
11 Sep 19,327,985.90 -31.59%
2 Oct 114,375,373.15 -33.52%
13 Nov 209,606,879.20 -32.45%
14 Dec 199,461,459.40 -31.93%
5 2018 Total 932,208,683.55 -32.23% Worksheet Formula:
6 =2019 Jan 6,608,339.05 -67.01% | -67.01%|-D16/D3-1
17 Feb 5,822,378.75 -68.17%
18 Mar 16,864,207.50 -66.25%

Page 23 of 50

YOY % Change Formula For Partial Year Data:

Helper Column in Date Table that asks the question “Is date in date table less than or equal to the last sales date
in the fact table that is pushed 12 months back?”

1 ValidDatesForPartialYear5SaleYOWCalc = dDate[Date]<=EDATE{M&X(f5ales[Date]),-12)

MonthMumber # |~ | Month |~ | Year |~ | EOMonth |~ |REIGIRETS S Tyl Gl a1la () L1 ﬂ
3 Mar 2023 /3172023 rie

3 Mar 2023 373172023 True

3 Mar 2023 3/31/2023 False

CALCULATE uses the Helper Column from the Date Table as a filter to filter out dates after the last sales date in
the Fact Table. This prevents the formula from calculating after the last sales date in the fact table. This is helpful
for reports and visuals so that the amount does not show after the last sales date in the Fact Table. For amounts
in the first year, because the last year Measure delivers a blank, the DIVIDE function divides by zero and is thus
triggered to show a blank in the report or visual.

YOy&Change =
VAR LastYear =

[N N e W

sy}

RETURN

Gl =

CALCULATE([TotalSales($)],
SAMEPERIODLASTYEAR (dDate[Date]),
dDate[ValidDatesForPartialYearSaleYOYCalc])

VAR ThisYear = [TotalSales(%)]

IF(HASONEFILTER(dDate[Year]) ,DIVIDE(ThisYear - LastYear,LastYear))

Boolean Filters in CALCULATE

1. “Boolean Logical Test Filter”, or just “Boolean Filter” means that you use a single column, a comparative

operator and a condition, like: dProduct[Product]="Quad” in the two below examples:

Int |

F:terna QuadSalesB:=

cl etr . 7| CALCULATE([TotalSales($)],
ontext = dProduct[Products]="Quad")
Product "Quad"

External SalesRep ~|QuadSalesB

Filter — |Alysha Dewitt | 44,507,461.80

Context = Chantel Zoya 163,281,809.40

SalesRep = "Alysha Dewitt"|Chin Pham 164,438,397.60
Grand Total 1,452,192,120.30

Step 1: External and Internal filters are merged in an AND Logical Test:

External Filter Context:

dSalesReps[SalesRep] = "Alysha Dewitt"

Internal Filter Context:
dProduct[Products]="Quad")

AND

Step 2: Fact Table is filtered down to just rows for SalesRep "Alysha Dewitt" AND
Product "Quad", and then the formula calculates total sales to get 44,507,461.80

Page 24 of 50

Int |
nLerna QuadSalesB:=
Filter
Context CALCULATE([TotalSales($)] ,
antext — dProduct[Products] ="Quad")
"Cluad"
Region ¥= N

External Products -T TotalSales(5) QuadsalesB

Filter — 32,095,530.30 _185,835,235.35] | MW NE

Context Beaut 44,354,858.35 1185,835,235.35 | -
"Aspen” Bellen 32,080,310.80 | 185,835,235.35
Quad 185,835,235.35 | 185,835,235.35 | W -
Yanaki 109,831,843.95 | 185,835,235.35
Grand Total 404,197,778.75] 185,835,235.35

2. Why Same "Quad" Sales Number in all cells?

3. Because the CALCULATE functions uses the overwrite operation to merge the external filter (products in row
area of report and “W” (West) from the slicer) with the internal filter (Quad) into the final filter context that

filters the underlying fSales table.

Overwrite Operation in CALCULATE function

4. Example of Overwrite Operation for Aspen cell:

Stepi: List all filters: +

External Filter Context Internal Filter Context
dProduct[Products] = "Aspen” dProduct[Products] = "Quad"
AND

dSalesReps[Region]="West"

Step2: Remove column filters from External that are also in Internal
External Filter Context Internal Filter Context

= ! ! dProduct[Products] = "Quad"
AND

dSalesReps[Region]="West"

Step3: All remaining filters are run in an AND Logical test to create final filter context

dsalesReps[Region]="West" AND dProduct[Products] = "Quad”

Boolean Filter Behinds Scenes Runs as a FILTER and ALL Function Construction
5. When you use a Boolean Filter, behind the scenes it uses the ALL and FILTER functions like this:

How it calculates:
1) ALL removes all filters from dProduct[Products] &
delivers a 1 column table that lists all product names.

QuadSalesFA:=

CALCULATE([TotalSales(S)],

FILTER(
ALL(dProduct[Products]),

3) The " d" tablei d by CALCULATE to filt
dProduct[Products]="Quad"))) The "Quad" table is used by o filter

the underlying fSales table.

2) FILTER filters the ALL table & delivers a table with just "Quad".

Page 25 of 50

KEEPFILTERS Function to Perform AND Logical Test Rather Then An Overwrite Operation in CALCULATE

6. If you do not want the Boolean Filter result to have the same amount show up in every cell, you can use the
KEEPFILTERS DAX Function around the Boolean Filter as shown below. The KEEPFILTER function prevents the
CALCULATE function from using the Overwrite Operation and instead it forces the CALCULATE to run an AND
Logical Test. Said a different way: KEEPFILTERS merges External Filter Context with the Internal Filter Context
with an AND Logical Test rather than with the Overwrite Operation.

QuadSalesKF:=
CALCULATE([TotalSales(S)],
KEEPFILTERS(dProduct[Products]="Quad"))

Products -¥ TotalSales($) QuadSalesKF

«——

Internal Filter

External Filter

Product="Quad" AND Product="Aspen"
TRUE AND FALSE
FALSE

Empty Filter = No Records in Fact Table

Final Filter Context =

Aspen 252694,664.85 |
Beaut 349,439,787.95
Bellen 255,131,689.05
Quad 1,452,192,120.30| 1,452,192,120.30
Yanaki 854,526,623.25

Grand Total 3,165,984,885.40 1,452,192,120.30
Or with no Total Sales Measure:
Products ¥ QuadSalesKF

Quad 1,452,192,120.30
Grand Total 1,452,192,120.30

Internal Filter

External Filter

Product="Quad"
TRUE

Final Filter Context =

AND Product="Quad"
AND TRUE
TRUE

Product="Quad"

FILTER and VALUES Functions to SIMULATE KEEPFILTER Result

Below formula delivers the same result as KEEPFILTERS because VALUES in the first argument of FILTER can see the

External Filter Context.

QuadSalesFV:=

CALCULATE([TotalSales($)],

FILTER(
VALUES(dProduct[Products]),
dProduct[Products]="Quad"))

Products |- |QuadSalesFV
Quad 1,452,192,120.30
Grand Total | 1,452,192,120.30

Here are the steps for how this formula calculates its
results and shows only the Quad row in the report:

1. In"Aspen" cell, VALUES function can "see"
external filter context and so Aspen row
condition flows into VALUES.

Page 26 of 50

VALUES Delivers a one row table for the Aspen
product to the first argument of FILTER.

From the internal filter context, FILTER applies
the condition "Quad" to the Aspen row by
asking: "Aspen" ="Quad"? The FALSE answer
causes FILTER to deliver a blank as the condition
in the filter argument of CALCULATE.
CALCULATE filters the underlying fact table
down to no rows and the Measure delivers a
blank.

The blank causes the report to show no row for
Aspen.

The "Quad" cell in the report is the only row
where "Quad" ="Quad", so it is the only row
that appears in the report.

Logical Operators in DAX:

e AND Logical Test uses: & & (Double Ampersand)
e OR Logical Test uses: | | (Double Vertical Bar)
e List of Conditions for OR Logical Test: IN { “Condition1”, “Condition2”, ... “ConditionN"}
e NOT: use NOT Function
e Comparative Operators: =, <, <=, >, >=, <>, = = (strictly equal to)
o The “strictly equal to” operator == returns TRUE when the two arguments have the same value or are
both BLANK. A comparison between BLANK and any other value returns FALSE.

Page 27 of 50

AND Logical Test with Two Filter Arguments in CALCULATE function
You can construct an AND Logical Test in the CALCULATE in these ways:

1. Use two filter arguments in CALCULATE, like:
e QuadSalesBandNW:= Two A s
CALCULATE([TotalSales($)], wo Arguments in
, _ . CALCULATE.
dProduct[Products]="Quad", dSalesReps[Region]="NW") <4

2. Use Double Ampersand when the two columns are the same, like:
e Both are fSales[LineSales], so this works:
CountSalesBetween0and500:=
CALCULATE([CountTransactions],

Same Two Columns so this

works with &&.
fSales[LineSales]>0 && fSales[LineSales]<=500) «—
e The two columns are different, so you get an Error:
QuadSalesBandNWError:= Different Columns
CALCULATE([TotalSales($)], so you get error
dProduct[Products]="Quad" && dSalesReps[Region]="NW") 4 with &&.
3. The AND function if the columns are from the same table, like:
e CountSalesBetween0and500AND:= AND function requires that both
CALCULATE([CountTransactions], columns are from same table.
AND(fSales[LineSales]>0,fSales[LineSales]<=500)) <4 |

OR Logical Test in CALCULATE function

Because the filter arguments in the CALCULATE function do not work as an OR Logical Test (they work as an AND

Logical Test), you can use the OR function with columns from the same table or you can use Double Vertical
Bars. Examples here:

e FreeStyleBoomsSales:=

CALCULATE([TotalSales($)], D;:rbgsr\;irgcrf !
KEEPFILTERS(Logical Test: | |.

dProduct[Products]="Quad" || dProduct[Products]="Carlota")) 4|

e FreeStyleBoomsSalesOR:=
CALCULATE([TotalSales(S)], OR Function for
KEEPFILTERS(Logical Test.

OR(dProduct[Products]="Quad", dProduct[Products]="Carlota"))) 4«

Page 28 of 50

KEEPFILTERS to Create Filtered Reports

This KEEPFILTERS and OR Logical Tests Construction is a method of creating a report with only certain items with
no need to use a filter or slicer, as shown here:

FreeStyleBoomsSales:=

CALCULATE([TotalSales(S)],

KEEPFILTERS(

dProduct[Products]="CQuad" | | dProduct[Products]="Carlota"))

Products | = FreeStyleBoomsSales

Carlota 235,555,938.85
Quad 1,452,192,120.30
Grand Total 1,707,748,050.15

OR Logical Test for List of Items using IN Operator in CALCULATE function

AussieRoundBoomSales:=
CALCULATE([TotalSales(5)],
KEEPFILTERS(
dProduct[Products] IN { "Flattop”, "Sunshine", "Sunset”, "Beaut" }))

Products - | AussieRoundBoomSales

Beaut 349,439,787.95
Flattop 206,121,057.60
Sunset 264,198,377.25
Sunshine 204,735,059.55
Grand Total 1,024,494,282.35

NOT Logical Test in CALCULATE Function to Filter to Items NOT IN List

MOTAussieRoundBoomSales:=

CALCULATE([TotalSales(5)],

KEEPFILTERS(

NOT({dProduct[Products] IN { "Flattop”, "Sunshine", "Sunset”, "Beaut" }}}}

Products ~ NOTAussieRoundBoomSales
Aspen 254,694,664.85

Dl e Ac 1279 590 NE

Page 29 of 50

CALCULATE to perform Context Transition

CALCULATE and CALCULATETABLE DAX functions can do these two things:

1)
2)

Change the Filter Context.

Perform Context Transition, which takes all available Rows Contexts and merges them with an AND Logical
Test and then converts them to Filter Context. When you invoke Context Transition on a table, the table must
have a unique set of records or a primary key to avoid the double count error.

Examples of Context Transition:

1)

2)

3)

4)

5)

In a Calculated Column there is no Filter Context, and so an aggregate calculation like SUM can not “see” the
ProductID Row Context to calculate the Product Sales for each row, like:

[SUMSaIes] - Jfx [=sumM(fsales[LineSales])

Products [BB| Retailprice B3| category B3| supplier B EINEIES =

Quad Freestyle Gel Boom.. 5,740,887,136.55
2 Yanaki Beginner Colorado B... | 5,740,887,136.55

If we put SUM function inside CALCULATE, because CALCULATE is programmed to convert all available Row
Context into Filter Context, the ProductID Row Context in each row is converted to Filter Context, then the
Fact Table is filtered down to just the rows for that product, and the Calculated Column formula can deliver
the correct Total Sales for Each Product, as shown below. Context Transition works because the table being
iterated contains a unique set of records.

Jfx |=CALCULATE(SUM(fSales[LineSales]))

Products B3| RetailPrice B3| category BE| supplier B3| sumsales [~ | CALCULATESUM -

Quad Freestyle Gel Boom... 5,740,887,136.55 1,452,192,120.30
Yanaki Beginner Colorado B... 5,740,887,136.55 854,526,623.25

In the DAX Formula language, all Measures have a hidden CALCULATE Function wrapped around it. This means
that whenever you use a Measure in a Calculated Column or an Iterator function, it will convert the available
Row Context into Filter Context, like:

fx [=[TotalSales(5}]

E RetailPrice [Category B Supplier B sumsales B caLcuLATESUM | - |Hiddencalculate [+
Freestyle Gel Boom... 5,740,887,136.55 1,452,192,120.30 1,452,152,120.30
Beginner Colorado B... 5,740,887,136.55 854,526,623.25 854,526,623.25

Here is a Formula that calculates the % of Total Sales for each product in a Calculated Column using the
aggregate SUM function with no Filter Context and the Total Sales Measure with Filter Context:

[% OfTotalPro. - [x [H[TotalSales($)]/sUM(fSales[LineSales])
Pmducts u RetailPrice u Category ﬂ Supplier ﬂ Y%OfTotalProductSales |[=
Quad Freestyle Gel Boom.. 25.30%
2 Yanaki Beginner Colorado B... 14.88%

The #1 Problem to watch for when invoking Context Transition is: the double count problem when you invoke
context transition over a table with duplicate records. Because many fact tables have duplicate records, this is
a common mistake. In the below picture, when the Measure invokes Context Transition, the Row Context is
Converted to Filter Context and the Fact Table is filtered for each row being iterated, but for rows with
duplicate records, the table is not filtered down to just one row, but instead it is filtered down to all matching
rows, which is not correct. For example, in the picture below, the two records are identical and so for each of
the records the Filter Context will deliver two rows and thus double count the Line Sales Amount.

Page 30 of 50

7/* | 43.95|=| 307.65| =307.65+307.65=615.3
/' 71*| 43.95|=| 307.65 (Double Counts)
fx |=[Totalsales(5)]
SalesR... 'E- Unitss... COGS eSalesMeasure | =
307.65 615.3 |
307.65 \ 615.3
T
7/*| 43.95|=| 307.65| =307.65+307.65=615.3
70*| 43.95|=| 307.65 (Double Counts)

6) The real power of Context Transition can be seen in a Measure like Average Monthly Sales, which we can use
in a Product Report to calculate Average Monthly Sales By Product with only a single formula, rather than a
multiple step approach and seen in the bottom part of the picture below.

AverageMonthlySalesHC:=AVERAGEX(VALUES{dDate[EOMonth]),[Totalsales(3)])
Products |~ TotaISales[S-R AverageMonthlySalesHC Steps in Calculation:
™
1) Aspen filter flows into [TotalSales($)] Measure
Aspen 254,694,664.85 2,927.524.88 and filters Fact Table down to just rows for Aspen.
2) VALUES function delivers a unique list of
EOMONTH values (no duplicates) from Date Table to
Beaut 349,439,787.95 4,016,549.29 the first argument of AVERAGEX.
Bellen 255,131,689.05 2,932,548.15 3) The Measure iterates the EOMONTH table.
4) For each row in the EOMONTH table the Hidden
CALCULATE function wrapped around the Measure
performs Context Transition and converts the
EOMONTH Row Context into Filter Context so that
the Fact Table is filtered down to just rows for
Carlota 255,555,938.85 2,937,424.58 Aspen in the Given Month.
5) The Iterator function calculates the correct Aspen
Eagle 658,302,299.55 7.566,693.10 Sales Amount for Each Month.
6) The Aspen Sales for each month are then used to
calculate an Average: Average Monthly Sales By
Elevate 324,187,645.15 3,726,294.77 Product "Aspen".
Flattop 206,121,057.60 2,369,207.56
Yanaki 854,526,623.25 9,822,145.09
Grand Total |5,740,887,136.55 65,087,208.47
Products |A5pen -T|
EOMonth - |Totalsales($)
1/31/2017 1,307,205.35
2/28/2017 1,167,385.55 Hidden Rows
2/29/2024 664,917.50
3/31/2024 343,336.95
Grand Total | 254,694,664.85
Average: | 2,927,524 88 |<<== Multiple Step Method:
1) Create End of Month Total Sales Report.
2) Add an Aspen Filter.
3) Create Worksheet Formula.
Context Transition in AVERAGEX involves few steps & is easy to deploy:
AverageMonthlySalesHC:= AVERAGEX(VALUES|(dDate[EOMonth]),[TotalSales({5)])

Page 31 of 50

When Context Transition Causes Trouble: Context Transition for a Measure Over a Table with Duplicate Records

Looking at Formula #3, when you invoke Context Transition over a table with duplicate records or no primary key, for the rows that are duplicates, the table will
be filtered down to show all matching records, and thus the formula will calculate an amount that uses all matching records (a value that is too big) rather than
make the calculation based on the single row (shown in picture at bottom of page). In this case, rather than invoke Context Transition with the hidden calculate

in a Measure, use a formula rather than a Measure (Formula #2).

1) Use AVERAGE Function If you have . . . 3) Do NOT use AVERAGEX to iterate over
)] 2) Use AVERAGEX with a formula if you don't have)]
column of transactional sales in fact i)) a table with duplicate records when the
transactional sales field in fact table.]
table. second argument contains a Measure.
AveTransactionalSaleF:= AveTransactionalSaleM:=
AVERAGEX(AVERAGEX(
AveTransactionalSaleC:= fsales, fsales,
AVERAGE(fSales[LineSales]) RELATED{dProduct[RetailPrice])*fsales[UnitsSold]) |[TotalSales(5)])
Supplier - |AveTransactionalSaleC AveTransactionalSaleF AveTransactionalSaleM
Channel Craft 2,080.77 2,086.77 2,602.70
Colorado Boomerangs 2,519.78 2,519.78 3,088.37
Darnell Booms 1,761.69 1,761.69 1,856.58
Gel Boomerangs 3,058.47 3,058.47 3,764.53
Grand Total 2,586.22 2,586.22

Problems with Measure that iterates a table with duplicate records:

/ 3,164.08

1) Context Transiation converts the Row Context to Filter Context, and for the duplicate records, the calculated row amount will be too high (double count).
2) The 3rd formula above unnecessarily iterates the Fact Table twice: once in 1st argument of AVERAGEX and another time inside the Measure.
3) The 3rd formula above does not need context transition to work because the formula was already iterating over the Fact Table.

SalesR... 8 E8| Unitssold Linesalesm [
307.65 615.3
307.65 615.3

This shows a duplicate record in fact table. The LineSales column shows the correct amount

of 307.65 for each of the duplicate records. But the LineSalesM column shows that the 71* | 43.95

=| 307.65| =307.65+307.65=615.3

Context Transition for the duplicate rows double counts the amount because Row Context is 71+ | 43.95

=| 307.65 (Double Counts)

converted to Filter Context and for each duplicate record the fact table is filtered down to
two rows, and the incorrect double amount of 615.3 is the result for both duplicate records.

Page 32 of 50

Rule for When to Use Context Transition:

e When you iterate over table with duplicate records no primary key: Use formula.
e When you iterate over table with a unique set of records or has a primary key: Measure that invokes Context Transition won't cause miscalculation.

12 Month Moving Average DAX Formula and Report

When you have volatile sales and you would like a metric to help see the over all trend, you can use a 12-Month Moving Average as shown in the figure below.

X V1 12MonthMovingAverage($) =
2 CALCULATE(
3 AVERAGEX(VALUES (dDate[EOMonth]), [TotalSales($)]),
a DATESINPERIOD(dDate[Date],MAX(dDate[Date]),-12,MONTH))

@ TotalSales(s) @ 12MonthMovingAverage(s)

120M
200M 100M
3
w
(=4
m
5 goM T
= 150M 8N
s =
n =L
a o
E £
9 sO0M
] DT =
5 100M =
= -—
c
=]
=
M N
o
50M
20M
-
I
‘-Ii c o = = = = 5 [=p I = ‘j = = cC o = = - = 5 o o j = = c o = = = = 5 (=1 = ‘:" = =
o & 3 2 3 T = o & 3 2 3 T o= o &/ 3 2 35 o
fSlEz<2<=z=2"3Fdozailz2z2"28czc>0lzz<=22"280z2a
2018 2019 2020
Manth

Page 33 of 50

Moving 12 Month Average Formula For Partial Year Data:

The IF function logical test asks the question “in the current filter context, is there a fact table sales date?” When there is
no sales date, this prevents the Measure result from showing up after the last sales date in the fact table.

1 12MonthMovingAverage =
2 VAR Movel2MonthAve o
3 CALCULATE(

4 AVERAGEX (VALUES (dDate[EOMonth]), [TotalSales($)1),
5 DATESINPERIOD(dDate[Date],MAX(dDate[Date]),-12,MONTH))
6 RETURN

7 IF(MAX(fSales[Date]),Movel2MonthAve)

Complex Filter
o Complex Filter is a filter that involves two or more columns and uses a combination of AND Logical Tests and OR
Logical Tests, such as:

Year = 2017 AND Month = Nov
OR
Year = 2017 AND Month = Dec
OR
Year = 2018 AND Month =Jan
OR
o |Year=2018 AND Month = Feb

e Complex Filter Reduction Error can happen when:

o We have a complex filter on two or more columns in a PivotTable or Power Bl Visualization.

o InaMeasure, we have an Iterator function that is iterating over one or more of the columns involved in
the external complex filter.

o Context Transition (Row into Filter Context) is occurring in the 2nd argument in the iterator.

o The Overwrite process in CALCULATE replaces the External Column/s with the Internal Columns/s and
leads to the incorrect number of rows in the table being iterated.

o The KEEPFILTERS function can help to solve this error by instructing CALCULATE to use an AND Logical
test rather than the Overwrite Operation. But it is MUCH better to build a data model solution by adding
an EOMONTH column in the Data Table and use that column to iterate over.

CROSSJOIN DAX Table Function

e CROSSJOIN(Table,Table) = Cartesian product of two or more tables that returns a table, # rows = product of the
of rows from all tables, # columns = the sum of the # of columns in all tables.
e Example of CROSSJOIN in first argument of AVERAGEX function is on next page

Page 34 of 50

A Complex Filter is created

because we are using two

separate columns [Year &

Month) and filtering to create a

combination of AND and OR
Logical Tests:

OR

2017 AND Dec
OR

2018 AND lan
OR

20118 AND Feb

2017 AND Mow -

AverageMonthlySalesHC=

AVERAGEX(
VALUES|dDate[EOMonth]),
[TotalSales(s)])

AverageMonthlySalesCIError=

AVERAGEX(
CROSSIOIN|

VALUES(dDate[Year]),
VALUES(dDate[Month])),

[TotalSales(5)])

Using EOMONTH Helper Column, We Get Correct Average Monthly Sales:

Year Month |[Monthly Sales
2017 |Nov 310,305,980.45
2017 |Dec 293,014,483 95
2018 |Jan 20,034 33275
2018 |Feb 18,293,496.50

Average: 160,412,073.41

™ Year -T| Month TotalSales(5) AwerageMonthlySalesHC AverageMonthlySalesCIError

=2017 Nowv 310,305,980 45 310,305,980 45 310,305,980 .45

Dec 293,014, 483.95 293,014,483.95 293,014 483.95

2017 Total 603,320,464.40 301,660,232.20 301,660,232.20

= 2018 lan 20,034,332.75 20,034,332.75 20,054,332.75

Feb 18,293,496.50 18,293,496.50 18,293,496.50

2018 Total 38,327,829.25 19,163,914.62 19,163,914.62
Grand Total 641,648,293.65 160,412,073.41 _w 138,292,353.04

Using CROSSI0IN, We Get INCORRECT Ave. Monthly Sales:

Year Month |Monthly Sales
2017 [Mov 29,309,526.50
2017 [Dec 26,312,235.60
2017 (lan 310,305,580.45
2017 |Feb 293,014,483.95
2018 |Nov 20,034,332.75
2018[Dec 18,293,496.50
2018(Jan 209,606,879.20
2018 |Feb 199,461,489.40

Average: 138,292,353.04

When you have two columns in an external filter context (created by a hierarchy) that are locked in an AND and OR Logical Test, and both
fields are being iterated inside the Measure, the Overwrite Process will use the incorrect eight rows to iterate rather than the correct four

External
Complex Filter:

Year Month 2017| Cartesian
2017 |Mov 2018 Product
2017|Dec
2018|Jan
2018 |Feb

Month Column JE

Cartesian Product Process:

** 4 Rows to lterate

[This formula would fix it:

BverageMonthlySaleskF:=
BVERAGEX|

**But use EOMONTH Helper Column formula instead!!!

MNow 2017 2017 |Nov 2017 |Nov
Dec 2017|Dec 2017|Dec
2017 |Jan 2017 |Jan

L 2017 |Feb 2017 |Feb

2018 2018 |Nov 2018 |Nov

2018|Dec 2018|Dec

- 2018|Jan 2018|Jan

W 201E|Feb 2018|Feb

KEEPFILTERS(CROSSIOIN{VALUES(dDate[Year]), VALUES(dDate[Month]))), [TotalSales($)])

** B Rows to lterate

Page 35 of 50

Star Schema Data Model and Expanded Table Diagram:

= dDate EE] & fsales B dproduct
] Date
MM Products
—1
[Month
M vear 1 Il [category
:I:\ M supplier
[ValidDateForYOYFor...) LineSales =
If2 Sum of LineSales & 3
. [dsalesReps
/& SalesTwoSteps

If8 CountTransactions
I3 salesOneStep .

/3 TotalSales($) T Region
I8 TotalcOGS(S)
1D GrossProfit($)

[salesRep

Color Coding:
Mative Columns are columns in the table

Expanded Columns and columns that flow into a table through a one-to-many relationship

Expanded Table Diagram Key Concept: When there are one-to-many relationships between the Fact Table and the Dimension
Table, because filters on Dimension Tables flow to Fact Table, it is as if the Fact Table contains all columns: Native and
Expanded.

Fields/Tables
ProductiD
Products
RetailPrice

dProduct dSalesRep dDate fsales

Category

Supplier
SalesReplD

SalesRep

Region

Date
MonthNumber
MonthMumber
Year

EOM
ValidDateForYOYCalc
Date

ProductiD
SalesReplD
UnitsSold
COGS
LineSales

Expanded Table Columns Helps Answer These Questions:

1) Which Tables will a "Column Filter" affect?
ALL(fSales[UnitsSold]) In ALL, this column filter removes filters from fSales only
ALL{dProduct[Product]) In ALL, this column filter removes filters from dProduct and fSales
2) Which Columns will a "Table Filter" affect?
ALL(fSales) removes filters from all tables

3) Which Expanded Table columns are in play with any "Table Filter"?
ALLEXCEPT(fSales,dProduct][Category]) uses a field from dProduct but filters the fSales table.

Page 36 of 50

Table Filter To Go Backwards Across Many-To-One Relationship

This example can be found in the file named “17-TableFilter.xlsx”.

Table Filters like Fact Table
allow you to send a filter
backwards across a Many-
To-One Relationship

B dDate

B Date

E MonthNumber

M Month -
M Year

[EOMONTH

£ fCompressor

A Date

[CompressorlD

[sales

If21 TotalSales($)

Iff TransactionCount

I8 UniqueMonthsTransactionOcurred

@ UniqueMonthsTransactionOcurredTableFilter

M dProduct

1] CompressoriD
1 1] Compressor

[Supplier

Example of “Unique Months Transactions Occurred” Count for each Supplier:

1. The below COUNTROWS / VALUES formulas (UnigueMonthsTransactionOcurred Measure) is counting filtered
rows on the EOMONTH Field. But it returns a 48 count of all possible months because the filter from the
dProduct that is filtering the fact table cannot move across the Many-To-One Relationship from the Fact Table
(fCompressor) to the Date Table (dDate).

2. But when we add a table filter of fCompressor as a filter in CALCULATE
(UnigueMonthsTransactionOcurredTableFilter Measure), because the expanded table has all fields from the
data model, including the dDate table, the dDate table is filtered down to just the EOMONTH unique dates that
the VALUES function is delivering for the current filter context.

UnigueMonthsTransactionO
curred:=

COUNTROWS(
VALUES(dDate[EOMONTH]))

UnigueMonths
TransactionOcurred
TableFilter:=
CALCULATE(
COUNTROWS(
VALUES(dDate[EOMONTH])),
fCompressor)

UniqueMonths

Transaction |UniqueMeonths TransactionOcurred
Supplier ~|Compressor | ~ | TotalSales($) |Count TransactionOcurred TableFilter
+ Bay Air Services 225,870.00 11 48 320
+ Dawalt 80,340.00 10 48 8
+ DeVilbiss 57,215.00 27 48 22
+ Ingersol 185,721.00 26 438 18
Grand Total 549,146.00 104 48 44

Page 37 of 50

DAX Formula Evaluation Context Summary

Vi.

Vii.

viii.

There are Two Evaluation Contexts:

1. Row Context = allows a formula in a Calculated Column or an Iterator Function or in a
PivotTable/Power Bl Visualization to see the row and use the values from the row to make a
Row-By-Row Calculation.

2. Filter Context = all the Filters / Conditions / Criteria that filter the underlying tables in the Data
Model to provide the final values for the Measure to use to calculate the final answer.

CALCULATE and CALCULATETABLE DAX functions can do these two things:

1. Change the Filter Context.

2. Perform Context Transition, which takes all available Rows Contexts and merges them with an
AND Logical Test and then converts them to Filter Context.

All Measures have a hidden CALCULATE function wrapped around it.
There are two types of Filter Contexts that are used to determine the Final Filter Context under which
the Measure makes its final calculation:

1. External Filter Context = Filters / Conditions / Criteria from Excel PivotTables or Power Bl
Visualizations.

2. Internal Filter Context = Filters / Conditions / Criteria from inside the CALCULATE function.

How Final Filter Context is determined:

1. Filters / Conditions / Criteria from Excel PivotTables or Power Bl Visualizations flow into a
Measure.

2. Inside the Measure the internal and external filters are merged into the Final Filter Context
using the operators:

i. And Logical Test (Intersect)

ii. Overwrite

iii. Remove
When the ALL functions is used in a CALCULATE Filter argument, all the filters for the column, columns
or table are removed and become an empty filter.
When Complex Filters exist in the External Filter Context and the same columns are used in the first
argument of an Iterator function, then you can use KEEPFILTERS to perform an AND Logical Test rather
than Overwrite.
ALLSELECTED() DAX function, with no tables or columns added as arguments, serves as a filter modifier
that will remove the row and column filters from the report or visual and leave the filters that are external
tothe report or visual intact.
Column filters work on just the column.
Table filters work on Expanded Table and can go backwards across One-To-Many Relationship.

Calculating Averages at Different Grains and with Different Formulas

There are many different types of averages, such as mean, median, mode, and geometric mean. The most common
average is the arithmetic mean, also called just the mean. This metric is commonly known as an average, and | will refer
to it as such. The average calculation involves adding up a set of numbers and dividing by the count of that set of
numbers. This metric is helpful because it gives you a single number that represents all the data points and can be used
to gauge the typical performance for a given set of numbers.

In analytics, you are usually given a fact table with a certain grain (which refers to the size of the number in each row).
The fact table in this project has a transactional grain, where each row in the table represents a sale of a product, by a
specified SalesRep, on a specified date. If you average the sales amounts in all the rows of the fact table, because the
grain of each number is at the transactional level, you are calculating the average transaction sales. If you add the
transactional sales amounts to get the daily sales total amounts and then use those numbers to calculate an average,
because the grain of each number is now at the day level, you are calculating the average daily sales. If you add the

Page 38 of 50

transactional sales amounts to get the monthly sales total amounts and then use those numbers to calculate an average,
because the grain of each number is now at the month level, you are calculating the average monthly sales. Each of
these metrics communicates the typical sales amount at the given grain.

We will make these three average calculations:

e Average transactional sales by product
e Average daily sales by product
o Average monthly sales by product

If the goal is to calculate the average transactional sales, you can just use the Line Sales field from the fact table inside
the AVERAGE DAX function, which works the same as the Excel worksheet AVERAGE function. That formula uses the fact
table row line sales numbers as a set of numbers; it adds them up and divides by the count.

However, you often need to make aggregate calculations, such as averages, with a grain that is larger than the grain in
the fact table. For example, to calculate the average daily sales, the grain of the numbers needed in the formula is larger
than the grain of the numbers in the fact table. Luckily, DAX formulas can deal with such grain disparities easily; in fact,
this ability is one of the main benefits of DAX formulas.

For the average daily sales calculation, there are two useful approaches to building the DAX formula:

1. Thefirst approach is to pre-aggregate the daily sales amounts and then, once you have the daily sales totals,
average those numbers. The pre-aggregation is necessary because there are many records in the fact table for
any given day. You must add up the sales for each day and then, once you have that set of daily sales numbers at
the correct grain, you can average them. For this approach, you can use the AVERAGEX DAX function.

Note: If you needed to calculate the average daily sales with only the standard PivotTable tool and worksheet
formulas, because there is no way to pre-aggregate numbers with a standard PivotTable calculation, you would
be forced to create an intermediate table in the worksheet with the total sales for each date and then make a
standard PivotTable from that intermediate table. This approach was common before the Data Model and DAX,
but it was time-consuming, did not work well with large datasets, and could become very complex.

2. The second approach to calculating average daily sales is to just add up all sales and then divide by the unique
count of dates in the Date field in the fact table. This approach is more straightforward than the first approach,
but it is possible only because there is a field in the fact table that allows you to create a unique list of dates. For
some calculations, such as average monthly sales, there is usually not a field in the fact table that allows you to
get a unique count of months for the denominator, and therefore you cannot use this second approach (though
the first approach will work). When you have an attribute field in the fact table, you can use the DIVIDE and
DISTINCTCOUNT DAX functions.

Note: If you needed to calculate the average daily sales with only the standard PivotTable tool and worksheet
formulas, because there is no unique count calculation in the standard PivotTable, you would once again be
stuck with a more inefficient worksheet solution if you wanted to use this second approach.

Examples on Next Page)

Page 39 of 50

Average Transactional / Daily / Monthly Sales By Product DAX Formulas:

ZEod
ZE655
2656
2657
2655
ZE653
ZEG0
661
ZEEZ
2663
ZTdT
2745
2743
2750
2731
£TaL
ZT93

A

B

Products
Aszpen
Beaut
Bellen
Carlota
Ezgle
Elevate
Flattop
Kangaroo
LengRang
MaturalElbo
Quad
Sunset
Sunshine
TriFly
rang
Yanaki
Grand Total

Products Aspen

C

]

E

In AVERAGEX we do NOT
want Context
Transition [duplicate
fact table records,
iterate fact table 2

Table in 1st argument of
AVERAGEX has no dups.
In 2nd argument, we
want Context Transition
to bring Row Contesxt

Condition into formula

Table in 1st argument of
AVERAGEX has no dups.
In 2nd argument, we
want Context Transition
to bring Row Contesxt
Condition into formula

Because we have a date

times). and filter the fact table. |and filter the facttable. |thanan AVERAGEX formula.
AveTranzactionaliale:= AveMonthlySales:= AveDailySalesOverFactTableAtt
AVERAGEX(AvelDailyales:= AVERAGEE(ributeColumn:=

fiales, AVERAGER] WALUES[dDate[EDOMonth] | CIVIDE|

RELATEDdProduct[Reta |dDate, I [Totalzales(S]],

ilPrice]j*fSales[Unit=Sol

[TotalSales(S)]}

[TotalSales(S)]}

attribute field in fact table, we
can use this formula which will
tend to calculate more quickly

DISTINCTCOUNTfSales[Date]))

AveTransactional5ale
2,282.48
3,311.41
2,287.77
2,289.07
1,8358.06
3,331.12
2,400.75
2,300.16
3,979.08
3,417.89
4,055.98
2,382.20
1,833.25
1,234 48
1,194.99
2,388.85
2,586.22

Date * | TotalSales|S)
1/1/2017 £0,753.25
1/2/2017 34,705.45
1/3/2017 43 525.55
3/15/2024 22,554.80
Grand Total 254,694,664,

Average Daily Aspen 5ales:

Products Aspen

AveDailysales

AveMonthlySales

| 95,952 67|

4 2,527,524 88|

133,018.57
57,119.03
57,206.52

250,209.92

123,594.22

78,732.26

88,927.15

2482,017.16

4,016,549.29
2,932,548.15
2,937,424.58
7,566,693.10
3,726,294.77
2,368,207.56
2,686,213.07
2,235,865.75
2,210,397.16
16,5691,863.45
3,036,762.96
2,353,276.55
509,504.31
1,042,390.45
5,822,145.09
65,987,208.47

One DAX Measure
compared to:

that requires
multiple steps

a calculation process

96,952 .67

EOMontl ~ | TotalSales(S)

1/31/2017
1/31/2024
2/259/2024
3/31/2024
Grand Total

1,307,205.35
£59,533.25
£54,917.50
343,336.95
254,604,664.85

~AVERAGE[C28:C2E54)

Average Monthly Aspen Sales:

2,927,524.88

=AVERAGE(C2663:C2743)

AveDailysalesOverFactTableAttri

96,952.67
133,018.57
97,119.03
57,206.52
250,209.92
123,594.22
78,732.26
88,927.15
74,565.31
73,563.14
551,354 .44
100,532.11
77,905.27
30,189.04
34,666.65
324,791.57
2,182,017.16

Page 40 of 50

Unmatched Items in a Relationship

This example can be found in the file named “17-UnmatchedItems.xlsx”.

As shown in the picture below, when you have a one-to-many relationship from a Dimension Table to a Fact Table, if
there items in the fact table (many side) that are not in the Dimension Table (one-side) then when you use an attribute
field (foreign key) from the fact table in a report or visual, all items will show, but if you use the primary key or other
fields from the dimension table in a report or visual, you will show one blank cell that accumulates all missing items.

o
72 MB FunRang 12.95
E] Units
48 Quad MB 29.95 .| m product
60 MTA MTA 75.95 = dproduct if2 sales($)
60 Quad Quad 43.69, ™ Product
96 FunRang B Price 1
132 Quad
36 FunRang
24 FunRang
144 Quad
108 MTA Product [-|TotalUnits Product [-|TotalUnits
Aspen not in Dimension Table = FunRang 156 Aspen 24
"Unmatched Item in Relationship" MB 288 FunRang 156
TZU0 guad MTA 264 MB 288
132 Quad Quad 636 MTA 264
24 Aspen | | (blank) 24 Quad 636
120 MB Grand Total 1,368 Grand Total 1,368

Product Field from dProduct in Row Area

Product Field from fSales in Row Area

For efficient DAX and Data Model performance,
we are NOT supposed to use

Attribute Fields from Fact Table.

Page 41 of 50

Date Table with the DAX functions GENERATE and ROW

These examples can be found in the file named “17-DAX-DateTableExamples.pbix”.

o The ROW DAX table function creates a one-row table with field names and values that you specify.

o The GENERATE DAX table function takes two or more tables and performs a cross-join (which is a Cartesian
product in set theory) between the two table functions to generate a new third table. A cross-join simply
matches up each row from the first table with a row from the second table. In the below example, because the
first table is a single column of dates, and the second table is a single row with date attribute DAX formulas,
each date in the first table will have a single row of data attributes added to it to create a full date dimension
table.

>< \v/ 1 dlvateGEMERATE =

2 GEMNERATE(

3 CALENDAR

4 DATE(YEAR(MIN{fSales[Date])),1,1),

5 DATE {YEAR(MAX{ fSales[Date])),12,31)),
6 RO

7 "MonthNumber™, MONTH{[Date]),

8 "Month", FORMAT([Date],"mmm"},

9 "year™, YEAR([Date]l),
1@ "EQMonth”™, EOMONTH{[Date],2)})

Date T | MonthMumber |~ | Month |~ | Year |~ EOMonth -
1/1/2024 12:00:00 AM T Jan 2024 1/31/2024 12:00:00 AM
1/2/2024 12:00:00 AM 1 |Jan 2024 1/31/2024 12:00:00 AM
1/3/2024 12:00:00 AM 1 |Jan 2024 1/31/2024 12:00:00 AM
1/4/2024 12:00:00 AM 1 Jan 2024 1/31/2024 12:00:00 AM
1/5/2024 12:00:00 AM 1 Jan 2024 1/31/2024 12:00:00 AM

Page 42 of 50

)(" 1 DateTableAdvancedWithGEMERATEandROW =
2 VAR Datelolumn =

3 CALENDAR{DATE (YEAR(MIN{ fSales[Date])),1,1),DATE{YEAR{MAX(FSales[Date]}},12,31})
4 RETURN \

5 GEMERATE|(

[DateColumn,

7 VAR BaseDate = [Date] Only 1 input:
8 VAR MonthMumber = MONTH{BaseDate)

9 VAR MonthMame = FORMAT(BaseDate,mmm" FaCt Table Date
1@ VAR WeekDayNumber = WEEKDAY(BaseDate,2) Field
11 VAR Daylflesk = FORMAT(BaseDate,"dddd™)
12 VAR YearStandard = YEAR{BaseDate)
13 VAR EOMonthDate = EOMONTH(BaseDate,d)
14 VAR StandardQuarter = ROUNDUP(MonthMumber/3,8)
15 S April 1 is first day in Fiscal Period
15 VAR FiscalQuarter = "Q-"& IF{StandardQuarter=1,4,5tandardQuarter-1)
17 VAR FiscalYear = IF{StandardQuarter=1,Yearstandard-1,YearStandard)
12 WAR FiscalPeriod = FiscalYear&™ "&FiscalQuarter
19 RETURN
28 ROI(
21 "Month Mumber”, MonthNumber,
22 "Month", MonthMame,
23 "Year", YearStandard,
24 "EOMonth™, EOMonthDate,
25 "Quarter”, StandardQuarter,
268 "Fizcal Quarter", FiscalQuarter,
27 "Fizcal Year", Fiscal¥ear,
28 "Fiscal Period", FiscalPeriod,
29 "Weekday Mumber", WeekDayNumber,
32 "Day OfFf Week",Daylfleek
31
32)
33)

Date |E| Month Number |E| Month |E| Year |E| EOMonth El Quarter El Fiscal Quarter |E| Fiscal Year El Fiscal
07/01/2024 7 Jul 2024 07/31/2024 3 Q-2 2024 2024 g

Page 43 of 50

Using the DISTINCTCOUNT and DIVIDE DAX Functions for faster calculating average

These examples can be found in the file named “17-21MillionRowTable.xlIsx”.

The DISTINCTCOUNT DAX function counts the number of unique values in a column. This function is particularly fast at

calculating an answer because it communicates with the Data Model columnar database, which is programmed to store
all original full table fields as unique list columns. Thanks to this columnar database characteristic and because the fact
table has a date field that correctly marks each row with the date attribute, you can create an alternative average daily

sales formula by using the DISTINCTCOUNT function, and the resulting formula will have a faster calculation time than
the AVERAGEX formula. Examples shown here:

Table iterated is 21 million rows.

Table iterated in 7 rows and reduces calculation
time over fact table formula by about 25%.

AveTransactionalSalesFact:=
AVERAGEX(
fSales,

RELATED({dProduct[Price])*fSales[Units])

AveTransactionalSalesAlternative:=
DIVIDE(SUMX(

VALUES(dProduct[Price]),
dProduct[Price]*CALCULATE{SUM(fSales[Units]))),
COUNTROWS(fSales))

AveTransactionalSalesFact

AveTransactionalSalesAlternative

62.16

62.16

Cardinality of Tables in Iterator Functions

These examples can be found in the file named “17-21MillionRowTable.xlIsx”.

e Cardinality = number of items in a set (table or array) or number of iterations.

e (Cardinality matters for Big Data Calculations because, in general, the smaller the cardinality or the fewer the
number of iterations, the faster the formulas will calculate.
e Examples of Total Sales Calculations from Video:

Table iterated in 630 rows and Table iterated in 7 rows and

Table iterated is 21 million |reduces calculation time over fact |reduces calculation time over fact
rows. table formula by about 20% table formula by about 32%
TotalSaleslterateFact:= TotalSaleslterateProduct:= TotalSaleslteratePrice:=
SUMX(SUMX(SUMX(
fSales, VALUES(dProduct), VALUES(dProduct[Price]),
RELATED(dProduct[Price])* |dProduct[Price]* dProduct[Price]*
fSales[Units]) CALCULATE(SUM(fSales[Units]))) |CALCULATE(SUM(fSales[Units])))
TotalSaleslterateFact TotalSaleslterateProduct TotalSaleslteratePrice

1,210,909,098.70 1,210,909,098.70 1,210,909,098.70

Page 44 of 50

Approximate Match Lookup with DAX:

These examples can be found in the file named “17-DAX-ApproximateMatchLookup.xIsx”.

1. Approximate Match Lookup DAX Formula to lookup the correct Discount Based On Units Purchased (both fields
in lookup table must be sorted smallest to biggest):

e CACETTTaT ot TOTTITOCIT TG IOTT arTo T ITCeT TTIT

[fx |[=CALCULATE(MAX(disDiscount[Discount]), FILTER(disDiscount, disDiscount[Units]<=fSales[Units]})

] Product li-u DiscountAproxMatchLookup M| DiscountRelationship 8 B | DiscountLOOKUPVALUE
Quad 160 | 0.35] 96 0.35
Carlota 11 0 0 0

2. Approximate Match Lookup DAX Formula to look create Foreign Key Column in Fact Table based on Units Field
so that a relationship can be used to do Approximate Match Lookup:

LELTELETITAT TidTd TOTIITSTLTTTL SUTC JIMTO TTTILET TTIT

Jx |[=CALCULATE(MAX({disDiscount[Units]), FILTER{disDiscount,disDiscount[Units] <=fSales[Units]})

E] Product 'i~u DiscountAproxMatchLookup [- | DiscountRelationship IERE] DiscountLOOKUPVALUE

" Quad 160 0.35 | 96 0.35
N Carlota 11 0 0 0
il Quad 36 0.2 12 0.2

3. Relationship can now be used with REALTED function to lookup correct Discount:

M disDiscount

— foales M Units

B Date M Discount
Product

T Units

[DiscountAproxMatch...

[T DiscountLOOKUPVAL...
I3 TotalSalesAML
I3 TotalSalesR

4. This is a stand-alone Approximate Match Lookup Formula that allows the Discount column to not require sorting
from smallest to largest (Units Field does require a sort from smallest to biggest):

SEL CXLETTTar Datd TOTIITarTyg SOTC arma TICeET T TAmOTarorTs

[x |[FLOOKUPWVALUE(disDiscount[Discount],disDiscount[Units] CALCULATE{MAX(disDiscount[Units]), FILTER(disDiscount,disDiscount[Units]<=fSales[Units]})})

u Product ﬂ DiscountAproxMatchLookup ﬂ DiscountRelationship e ﬂ DiscountLOOKUPVALUE b
Quad 160 0.35 96 | 0.35)
Carlota 11 0 0 0

al a

Page 45 of 50

ADDCOLUMNS and SELECTCOLUMNS DAX Table Functions

e ADDCOLUMNS(Table,"Name New Column", Expression) = Adds new column/s to a table. ADDCOLUMNS iterates
Row-by-Row over the table in the first argument.

e Example of ADDCOLUMNS to add COGS to the fSales table:

>< ~ 1 QuadCOGSFILTERADDCOLUMN =
2 ADDCOLUMMS
3 CALCULATETABLE (f5ales,dProducts[Product]="Quad"),
4 'COG5" ,RELATED{dProducts[Cost])*fSales[Units])
Date ~| SRID |~ | ProductlD |~ | CustomerlD |~ | Units | = | Line5Sales |~ | COGS |~
1/21/2027 12:00:00 AM 7] b 1 20 12490 506.25
4515/2024 12:00:00 AM (5] & 1 a8 4214 194775

e SELECTCOLUMNS(Table,"Name New Column", Expression) Has the same signature as ADDCOLUMNS, and has
the same behavior except that instead of starting with the <Table> specified, SELECTCOLUMNS starts with an
empty table before adding columns. SELECTCOLUMNS iterates Row-by-Row over the table in the first argument.

o Example of SELECTCOLUMNS to select the “Units” and “Sales” columns from the fSales table and to create the
two calculated columns “Product” and “COGS”.

TRFETET T s

X

QuadCOGSCALCULTETABLESELECTCOLUMNS =
SELECTCOLUMNS!(
CALCULATETABLE(fSales,dProducts[Product]="Quad"),
"Product” ,RELATED(dProducts[Product]),
"Units",fSales[Units],
'5&LesIJFSEles[LinESEles]J
'COG5" ,RELATED{dProducts[Cost]) *f5ales :Urits])l

a0 e

ohooun

|

Product |~ | Units |~ | Sales |~ | COGS |~

Chuad 103 4429 2047125

Quad 186 7208 3694675

Cuad 107 4601 2126625
DAX Studio

1. DAX Studio is a program that allows you to build DAX Formulas and time the speed of the formulas.
2. You can search for and download the program DAX Studio.
3. In Excel it appears in the Add-in Tab, as shown here:

File Home Insert Draw Pagelayout Formulas Data Review View Automate Oggelopsss Add-ins Help Acrg
- —_—

By -—

DAX
Studio

-
-
.

Al v i Jx

Page 46 of 50

4. To use DAX Studio for a Power Bl Desktop file, you must open DAX Studio and in the first step select the Power
Bl Desktop file that you want to examine, as shown here:

&1 Connect

o Power Bl / S50T Madel

—
n_) Tabular Server

" Advanced Options

fdl 17-VideoPlan e

5. DAX Studio only delivers table results (called a Query Result), and the DAX Code must always be preceded by the
EVALUTAE command, as shown here:

A58 @
File Home Advanced Help

> > &

Run Cancel Query Clear
. Builder Cache

Query

Metadata Functions DMV

~

(F) Model
Q, Searc
> [dDate
~ [dProduct
1.2 %0fTotalProductSales.
1.2 CALCULATESUM
A Category
1.2 HiddenCalculate

A’ Products

1.2 SUMSales

=

Clear
on Run

DAX Studio - 3.0.5

@ % Cut 2 Undo =2, A ToUpper %% Comment Q Find R = B Eﬁ E_a [‘j
B Copy ' Redo a To Lower % Uncomment @ Replace = = e - —
Results - Format Load Perf All Query Server Connect Refresh

Query~ »* DebugCommas <> Merge XML Data Queries Plan Timings Metadata
Output Edit Format Find Power Bl Traces Connection

CALCULATETABLE(fSales dProduct[Products]— 'Quad"),
"sales", RELATED(dProduct[RetaﬂPr1ce]) fSa'Ies[UmtsSo'Id])

EVALUATE
SELECTCOLUMNS (
CALCULATETABLE(fSsales,dProduct[Products]="Quad"),
"Product™,RELATED(dProduct[Products]),
"Units",fsales[UnitsSold],
"sales",RELATED(dProduct[RetailPrice])*fsales[UnitsSold])

6. To create or time Measures (scalar values), you must house Measure in the ROW function and create a one row

table, like:

EVALUATE

ROW("Fact", [TotalsalesIterateFact])

EVALUATE

ROW("Product"”, [TotalSalesIterateProduct])

EVALUATE

ROW(C"Price",[TotalsalesIteratePrice])

EVALUATE

ROW("Ave", [AveTransactionalSalesFact])

EVALUATE

ROW("AveAlternative", [AveTransactionalSalesAlternative])|

Page 47 of 50

Using DAX with Existing Connections feature to extract Data From Data Model into Worksheet

1. This example is in the file named “17-M365ExcelClassFinished.xlsx”.

2. The Existing Connections feature in Excel allows us to extract data from the data model and load it to the
worksheet.

3. This feature is very “clunky” and “primitive”.

4. Here are steps:

1. Asshown below, Select cell in worksheet, click Existing Connections button in Get & Transform group in Data
Ribbon tab, then in then in the Existing Connections dialog box select the Tables tab, then select a table from the
Data Model and then click Open, then in the Import Data dialog box, click OK.

File Home Insert Draw Page Layout Formulas Review View Automate Develo

[BE From Text/CSV F&E From Picture ~ P [H Queries & Connections
S o\

L
Geography C

[(%) Recent Sources

Data~ [E3 From Table/R [E| Existing Connections

Get & Transform Data Queries & Connections

A EENES %

I Select a Connection or Table
2| [l

|]
2 Connectionf] Tables
4

show: | Al Tables v

&
8 This Workbook Data Model ~
T ‘%@ Tables in Workbook Data Model
g % G Table(s)
g 17-VideoPlanxlsx (This Workbook)
10 dProduct
11 Tables!§H35:5L521
e dSalesReps
13 Tables!SNS5:5P530
14 DaxMinDate
= Tables!SE52:5653
= DaxMaxDate
16 Tables!SD$2:5D53
17 dDate
18 Tables!SBES5:5F52927
19 Table_dProduct
20 ExternalConnections!SBS2:515358039 W
21
2z Open Cancel
23

Page 48 of 50

2. Inacellinthe imported table, right click, point to Table, then click on Edit Dax, as shown here:

A B T D E F G H
1 [Caibi V|11 v|A AT~ % 9
2 productin K products =gy g N NPVl Kl sumisales B carcuia)
3 1 Quad — e e FANES 5740887137 14
4 2|Yanaki 1 S ~alorado Boomerangs 5740887137 85
5 3 Eagle | Search the menus nannel Craft 5740887137 65|
6 4 Bellen % cut =l Boomerangs 5740887137 3
7 5 Aspen b slorado Boomerangs 5740887137 254
8 6 Carlota (@ Copy =l Boomerangs 5740887137 25
g 7 Sunshine (B Paste Options: el Boomerangs 5740887137 204
10 8 Sunset =l Boomerangs 5740887137 26
1 9 Beaut ﬁﬁ slorado Boomerangs 5740887137 34
12 10 Kangaroo Paste Special.. rannel Craft 5740887137 23
13 11 Elevate =l Boomerangs 5740887137 32
14 12 Flattop 2 Smart Lookup slorado Boomerangs 5740887137 20
15 13 Vrang [Refresh arnell Booms 5740887137 9
16 14 TriFly == arnell Booms 5740887137 5
17 15 NaturalElk Insert > arnell Booms 5740887137 13
18 16 LongRang Delete 5 nannel Craft 5740887137 14
19 -
20 Select >
21 Clear Contents
22
ey @ Quick Analysis
24 Sort >
25
26 >
27 > EE Totals Row
28

Convert to Range

29
30 'lt:‘ Mew Comment External Data Properties...
31 . —
3) New Note
33

3. Inthe Edit DAX dialog box, select DAX from the command type dropdown arrow, then copy and paste the code
from DAX Studio into the Expression area, as shown here:

EATTART 1 LI T3 DERITITTET LUTUT UL DUUTITETATTES [I W i T
I — 1
agle 4028713

T Edit DAX

spe
arlor Use the Data Analysis Expressions [DAX) Language to modify the results returned
by the connection to the Workbook Data Model.

Lnsh

LIS Select DAY Command Type and enter an Expression:

eaul Command Type: |pax |

angs
Expression:

leva
EVALUATE

lattd | appcoLumns

rang CALCULATETABLE[fSales, dProdudc[Products]="Cuad"],

“Sales’, RELATED{dProduct[RetailPrice])*f5ales[UnitsSold])

riFly

atue

ongk

Cancel

Page 49 of 50

4. Hereis a second DAX Expression:

Edit DAX

Use the Data Analysis Expressions [DAX) Language to modify the results returned
by the connection to the Workbook Data Model.

Select DAY Command Type and enter an Expression:

Command Type: pax |

Expression:

EVALUATE
SELECT COLUMMS(
CALCULATETABLE(fSales, fSales[UnitsSold] = 225),
"Product” RELATED{dProduct[Products]),
“Gross Profit” fsales[linesales]-fhales[COG5])

K Cancel

5. Result looks like this:

K L b
Quad 2978.89
Quad 6054.57
Quad 6155.48
Quad 5802.3
Quad 5751.85
Quad _I 5751.85
Quad 5751.85
Quad 8357.3
Quad 6306.85
Quad 6205.94
Quad 6054.57
Quad 6332.08
Quad 6357.3
Quad 5751.85
TP | CNECS &7

Page 50 of 50

