M 365 Excel Class Video 12: Power Query M Code @

Table of Contents

What does Power Query do and how does it work? (from Only App Matter Book).......cccceeceeeiiieiieeeceie e 2
Excel and Power Bl Power QUEry RIDDON Tabsooi ittt et e e e tte e e e et e e e e e bae e e e snteeeesanraeeeeans 3
Power QUery EQItOr WINAOW iN EXCEIcccccuiiiiiciiiie et sttt e ettt e e s e tte e e s e tte e e e etteeeeeabtaeeesastaeeesstaaeeastaeessasteeeesasseneesnns 4
Power Query Editor Window in POWET Bl DESKEOP......vuiiiiiiiieeiiiieieeeiieee ettt ettt e e s ettt e e s st e e s sbae e e s sbaeeessbaaeessseeeessnseeessans 4
EXCElI POWET QUEIY LOA TO .uvviiiiiuiiiiiiiiiiee sttt e seite e e s sttt e s e tte e e s sabte e e s sabeeeeesabeaeeseaseaeessaseeeesansaaeeesnstaeessnsaeeesanseneessasseeessasseeesnnns 5
POWET Bl DESKEOP ClOSE & APPIY ceriiiiiiiiiie ittt ettt ettt e e e et e e e e et e e e e ebteeeeebaaeeesbteeeeansaaeeesastaeeesnsaseeeasaseesaasseaessnsseneesnns 5
The story of how M Code WOrKS iN POWET QUUETY: ...cccuuiiieiciiiee ettt ettt ectte e e e e tte e e e e ette e e e ebteeeesbaeeeeeabaseesenstaeassstaeeesasraneesnns 6
Microsoft Power Query M Code Specifications GUIEcccuveiieiiiiie ettt eree e e et e e e iba e e e e sabae e e e eaneee e ennes 6
DETINE POWET QUEIY ..ueviiieiciieeeeeite e e esttt e e sttt e e s eateeeesaatteeesaasseeeesseeeeassseeeaaseeee s ssseeeeasssaeeeassseeeeansseeeeansseeesansseneesssseeesnnnsens 6
V1T e Lo 1Y o] LT T o1V =T o @ LU 1T oS PRI 6
POWET QUUETY Data TYPES evviiieieiiieitirierertrerteeteeeeeeeeeareeeeereeeeeee.—...—.—..—.—.—... 7
DAta TYPES VS. VAlUEBS.....eiiieciiiee ittt ettt e ettt e e et e e e ettt e e e s eaaa e e e e s saeeeeaaseeeeesassaee e aseaeeeanssaeeeanssaseeanssaeesanssaseeansseneeeanseeesannsens 7
WHETE YOU CAN VIEW IM COUE ...ttt ettt e e ettt e e e ettt e e e e tta e e e easaeeeeaasaee e e ssaeaeenssaaeesnsaeeeensseeeansaneesnssneesansennens 8
o { =T (o] o - J OO PP PTTPPPPPTRRN 8
o 1= o 1) =T O OO T OO T OO PO TP SO PSSP U OO PPRRPPPPTR 8
G AY o] (o SRR 9
(0] oT<T =Y (o] §3F- [o[I LU Ta Vot {UE=) (o] 4TRSSt 9
Y=L a Lo T e BT o T =T V2P PPPUPP 9
M Code Tips: #shared, Tab, Linefeed, Return, Lists of Numbers & Letters and Joining Lists, Records & Tables............... 9
] 2D o] =T (o] o FF OO PP PP PUTRTPPPPP 10
Y @oTe [o To] (U o PP 12
e L0 0T T V2 1P PPPPPPPRS 14
CUSEOM FUNCLIONS ettt sb e s a e e sb e e s b e e sab e e s sba e e sabeesbae s 15
1ol o I 1o Lo UL g Lo [=T Yol o OO P PR PSPPROPRP 18

Page 1 of 18

What does Power Query do and how does it work? (from Only App Matter Book)

Power Query

Power Query was first introduced in Excel in 2013, exactly 20 years after the PivotTable was invented. And as
it turns out, Power Query is the greatest invention in Excel since the PivotTable. When you have to deal with
data, Power Query is a dream tool that can do everything. In Excel 365, most data analysis projects start with
Power Query, which is a perfect tool for all the data preparation you need to do before you use a PivotTable
to create summary reports with conditional calculations.

Power Query can connect to data sources such as text files, databases, websites, other Excel files, and XML
files. It can also bring data into the Power Query Editor window, which is an interface you can use to invoke
commands to import, clean, tkansform, and manipulate data. Finally, Power Query can load data to locations
such as the worksheet, the PivotTable cache, or the Data Model in the Excel app; and to the Data Model in the
Power Bl Desktop app. Power Query can also perform many other tasks that involve data, such as financial
and statistical calculations that are not related to reporting, visualizations, and dashboards.

When you use the Power Query user interface to do things like import data, add a data type, or combine
multiple tables, behind the scenes Power Query records every step for you so that you can go back and see
previous steps or even go back and edit previous steps in the query. Power Query records these steps using
a case-sensitive, function-based formula programming language called M code, were M stands for data
mashup. There are more than 700 functions in the M code language, but none of them are identical to Excel
worksheet functions. Luckily, most of the time you can use the Power Query user interface to create queries
by clicking on buttons and commands, and Power Query will write the M code for you. Sometimes, however,
the best option is to write your own M code. In this chapter, you will learn how to create queries both ways.

As you begin to learn how to use Power Query, it is helpful to understand that Power Query queries are
different from Excel worksheet formulas in two main ways:

* With worksheet formulas, you must type out and write your formulas manually, but when you create
a query, most of the time you click on buttons and invoke commands, and the M code formulas are
written for you.

* In a worksheet, formulas mostly deliver individual values in individual cells or arrays of values, but
in Power Query, M code can deliver values such as tables with fields, records, lists, functions, binary
files, and individual values such as text, numbers, dates, times, nulls, and Boolean values.

You can work with more types of objects (or values, as they are officially called in M code) in Power Query
than in an Excel worksheet. This makes sense because in data analysis, the objects that you often work with
are not simply numbers, text, and dates but instead are tables with fields, records, lists, and binary files.

Luckily, Microsoft put the Power Query tool in both the Excel app and in the Power Bl Desktop app. Figure
18.64 shows that in the Excel app, Power Query is in the Data tab in the Excel Ribbon. Figure 18.65 shows
that in the Power Bl Desktop app, Power Query is in the Home tab in the Power Query Ribbon. Although
the Power Query user interface is somewhat different in the two tools, almost everything else is the same.
Whatever you learn about Power Query in the Excel app can help you in the Power Bl Desktop app and vice
versa. In this example, you will use Power Query in the Excel app, and then in Example 3, you will use Power
Query in the Power Bl Desktop app.

Page 2 of 18

Excel and Power Bl Power Query Ribbon Tabs

Excel (Figure 18.64):
File Home Insert Page Layout Formulas Data Review View Developer Add-ins Help Power Pivot
r—
I:E From Text/CSV I}\g Recent Sources P Queries & Connections
=
[® From Web [B Existing Connections e |
Get = Refresh — — P
Dat': . [From Table/Range leef B < o owe r Qu e ry
I Get & Transform Data | I Queries & Connections I

Start new query to:
import, clean, transform,
and load data

existing queries and other
connections to data sources
in the Excel workbook

3 v 2
_ A / _ C _ D | E | F \G | H | | | J _ K _ L _ M
1|
Refresh or access:

Power Bl (Figure 18.65):

File Home Insert Modeling View Help
= —
Power | @ la @& [0 & B [B
Get Excel PowerBl SQL Enter Recent Transform Refresh
Query => data v datasets Server data sourcesv datav
Data Queries

7H

Start new query to:

Refresh or access:

=
data

import, clean,
transform, and load

existing queries

Page 3 of 18

Power Query Editor Window in Excel

Power Query Editor
window inside Excel app

¥

&~ 5 | fUnits - Power Query Editor

Power Query Ribbon: 4 tabs with buttons and commands

'

4 Dat tti il
“ Home | |Transform | IAdd Column | | View | a a source se |ngs e

gj [‘:—:‘ﬁ, ;25 Properties D 2l

Data Type: Whole Number v

LE Y, X X — F2 Merge Queries ~ =] [New Source ~
x 1 EJ_ 2 i = 2 g
= LLL izl [Use First Row as Headers > "% Append Queries ~ [Recent Sources ~
Close & Refresh Choose Remove Keep Remove Split Group 1 3 Manage Data source <
Load~ Preview] Manage ~ Columns ~ Columns~ Rows~ Rows~ Column~ By 5 ReplaceValues Combine Files Parameters v settings [Enter Data
Close Query Manage Columns Reduce Rows Sort Transform Combine Parameters Data Sources New Query
> 7x = Table.TransformColumnTypes(#"Promoted Headers",{{"ProductID”, Int64.Type}, {"Units Sold", Int64.Type}}) v C)UG“/." Set‘ii:‘gg X
E . 123 ProductiD ~ 1123 Units Sold >
g 4 PROPERTIES
3 1 1043 1\ 6 2
ame
2 E M Code Formula Bar e
1069 Rl i
Advanced 2005 Data Type Icons Al Properties
0 ~ Default query name
H 4 APPLIED STEPS
Editor for = =)
M Cod o s Query steps automatically created —— | >
ode Promoted Headers
2005 13
— 2 . X Changed Type
9 e - — Preview of data
10 1043 5

Power Query Editor Window in Power Bl Desktop

Power Query Editor window
inside Power Bl Desktop

Data source settings

Power Query Ribbon: 6 tabs with buttons and commands

1 | EH = | Ch18-Example3-PowerBIDesktopReport - Power Query Editor . - [m] X
Advanced Editor for M Code
I Home | |Tran5form | | Add Column | | View | | Tools | | Help l e
=X [h My D ’71.‘ z {75 ‘AH ;7 Properties ‘ L 2 ¥ —o DataType: Whole Number ~ i = Text Analytics
= LO == e Le L Advanced Editor . X z . = [™] Use First Row as Headers ~ @ Vision
Close & New Recent Enter Data source Manage Refresh Choose Remove Keep Remove Split Group 1 Combine
Apply~ Source v Sources~ Data settings Parameters~ Preview~ =] Manage ~ Columns ~ Columns > Rows~ Rows~ Column~ By 5 ReplaceValues - A Azure Machine Learning
Close New Query Data Sources Parameters Query Manage Columns Reduce Rows Sort Transform Al Insights
Queries [1] < £, n) ; O — oY £Rd - X
S Jx = Table.TransformColumnTypes(fUnits_Table,{{"ProductID”, Int64.Type}, {"Units Sold", Int64.Type}}) v
] fUnits i 125 ProductiD ~ [123 Units Sold - T 4 PROPERTIES
T 1 1043 6 NAamE
2 s M Code Formula Bar
i 3 1069 All Properties
List of : s | Data Type Icons Default query name
H 4 APPLIED STEPS
queries - 1069 i]
. - 1043 Source
in Power | 2005 s Query steps automatically created —>| tevisstion
X Changed Type
8 C—
Bl Desktop @ 208 € = .
A 5 —
: : Lo x Preview of data
flle 10 1043 5

Page 4 of 18

Excel Power Query Load To

Chapter 18: Advanced Data Analysis with Power Query, Power Pivot, Power Bl, M Code, and DAX

499

-

Il

-

fUnits - Power Query Editor

o
A

T~

Home Transform Add Column View

A L—E: Properties "_7 Lp -\'/

s, e : >(1

—&+ [} Advanced Editor -
Close &| Refresh Remove Keep
Load ~ ’ Preview v (2] Manage ~ umns v Columns~ Rows
"Bj Close & Load Manage Columns Redt

”[z} Close & Load To...

= Table.TransformColumnTypes(#"Pror

Save your changes to this query,

Import Data ? X

Select how you want to view this data in your workbook.

O 1Table
4] O PpivotTable Report /
EIEAdd this data to the Data Model§

i3 O PivotChart

Existing worksheet:
=SB58

New worksheet

Cancel

Properties

[(® Only Create Connection
Where do you want to put the data?
Figure 18.77 When you load to the Data Model, you
must select both of these options.
L]

database.

w
£ D 1% Produl o the Query Editor window, ks
- 1 and specify where to load the 5
o results.

2 1069 3

Figure 18.76 Use the Close & Load To option to choose where the data is loaded.

2. In the Import Data dialog box that appears, to
load the table to the Power Pivot Data Model,
select the Only Create Connection option button
and check the Add This Data to the Data Model
checkbox, as shown in Figure 18.77.

Click OK in the Import Data dialog box. The fact
table is loaded into the Data Model’s columnar
database, and you are taken back to the Excel
app window.

Take a closer look at the Import Data dialog box in
Figure 18.77. The top four options allow you to select
how to view the data in the Excel workbook file:

e Table: The query is loaded as an Excel Table in
the worksheet

PivotTable Report: The query is loaded into the
PivotTable cache.

PivotChart: The query is loaded into the PivotTable
cache.

Only Create Connection: The query is not loaded to the worksheet or the PivotTable cache. This option
allows Power Query to run the query steps on the source data in the Power Query Editor but then
pass the data along to other queries—or, in this case, pass the data into the Data Model’s columnar

Power Bl Desktop Close & Apply

11 H 5| Ch18-Exam

Home
=X [L‘ B

Trar]

Close & Apply = Run query, load data to Data Model, and
close Power Query Editor window

=
New Re

Close &
Source ¥ S

|Apply ¥ ces

5 Closeanpply 1w

.+ Apply
X

Apply = Execute query applied steps and load to Data Model

|==) Close
1 fUnits

Close = Close Power Query Editor and do not run query

Page 5 of 18

The story of how M Code works in Power Query:

Microsoft Power Query M Code Specifications Guide

https://learn.microsoft.com/en-us/powerguery-m/power-query-m-language-specification

Define Power Query

e Power Query is a tool to import, clean, transform and load data, or as Microsoft calls it “Data Mashup”.
e The amazing tool Power Query is in Excel and Power Bl Desktop (Power Bl Online has a similar tool called Data

Flows).

e Power Query uses a case sensitive, function-based M Code language to create Values.

Values possible in Power Query

o un R I e

~l

10

11

12

Description

Literal (Type a hard code value into M Code)

Null Absence of data. Example: null
Logical Boolean: true or false. Examples: true false
Text A string of Unicode characters. Example: "Quad"”
Number Used for numeric and arithmetic operations. Examples: 43,0, 43.46, 9.9e-5
#time(hour, minute, seconds)
Time Time for 24 hour day as decimal. Example: #time(11,10,57) = 11:10:57
Date as a serial number (Common Era Gregorian
calendar). Day 1 =01/01/0001. Last day = #date(year, month, day)
Date 12/31/9998S. Example: #date(1598, 01, 15)= 1/15/1598
#datetime(year, month, day, hour, minutes, seconds)
Example: #datetime(2021,10,01,11,10,57)) =
DateTime Datetime value contains both date and time. 10/01/21 11:10:57 AM
#datetimezone(year, month, day, hour, minute,
Represents a UTC (Universal Coordinated Time) second, offset-hours, offset-minutes)
DateTime date/time with a time-zone offset (last two Example: #datetimezone(2021,10,01,11,10,57,09,00) =
Zone arguments: hours & minutes). 10/01/21 11:10:57 AM + 9 hours
#duration(days, hours, minutes, seconds)
Serial Number Length of Date and Time Example: #duration(01,01,10,0) =
Duration (can be positive or negative). 1 day and 1 hour 10 minutes
Example: #table({"Boom Product”, "Sales"},
{{"Quad",43},{"Aspen”,351) = [goom proguct sates
Quad 43
Table Table with field names and records. S =
Example: [Boom Product = "Quad", Sales = 43] =
Boom Product Quad
An ordered sequence of fields, PR g
Record like a row from a table.
A sequence of M Code values house in curly Example: {“Quad”,”Aspen”} =
brackets. The list can have varied value types in list. +e
When you lookup a column, a list of values from the 1 e
List column is returned. 2 S

Page 6 of 18

https://learn.microsoft.com/en-us/powerquery-m/power-query-m-language-specification

Description Literal (Type a hard code value into M Code)
Example: Excel file = > D

EMT1812.x05x

160629 bytes

13|Binary Represents a sequence of hytes.
An M Code Custom Function is a user-created Example: Function calculates the effective rate =
and defines the variables and the mapping for ~ (APR, Periods) ==

14|Function those variahles to deliver a value. Number.Power(1+APR/Periods, Periods)-1
The Data Types we use on values in Power Example: "type number" for defining the Decimal
15|Type Query. Data Type

Power Query Data Types

Data Type Icon Short Description M Code
1|Decimal number 12 Number up to 15 decimals type number
Currency (Fixed decimal $

2|number) Number up to 4 decimals Currency.Type

3|Whole number 123» Number with no digit to right of decimal Int64.Type

4|Percentage % Number up to 15 decimals with % Number Format Percentage.Type

5|Date/Time E Serial number date and time together type datetime

6(Date il Serial number date type date

7|Time (9 Serial number time type time

8|Date/Time/Timezone ”?L Represents a UTC date/time with a time-zone offset type datetimezone

9|Duration O Serial Number Length of Date and Time type duration

B
10|Text Ac Text type text
11|True/False % Boolean type logical
12|Binary = File like Excel file or Text file type binary
ABC Sets numbers such as dates and decimals according to
13|Any e regional settings type any
You can add the keyword nullable to data types like
number so that the column can have the number or a type nullable

14|nullable null. number
15|anynonnull Any non-null value (all values excluding null). type anynonnull
16|none No values are classified type nome

Data Types vs. Values

1. Data Types on Fields aid consistent data in field and help create accurate calculations from the data.
2. Power Query Values are the possible outputs that M Code can deliver.

Page 7 of 18

Where you can view M Code

Applied Steps = List of query step names, called identifiers (As shown below).

Formula Bar = Shows M Code formula for selected step in the Applied Step list (As shown below).

Advanced Editor = Shows all the M Code for a given query, which consists of the let expression with all its query
steps that work in succession to deliver the final value of the query (As shown below).
Picture illustrates the three places to view and edit M Code:

Home Transform Add Column View
rg)'_j [[gyProperties J ij = ;l & I . E__] Data Type: Any ~ = Tg [_L‘. [New Source ~
o3 _T Advanced Editor R A s D Use First Row as Headers v o — D Recent Sources ~
* w2 -
Close &+ Reérresr Choose Remove Reduce Split Group 1 Combine Manage Data source
Lgaﬂ" Preview >] Manage ~ Columns ~ Columns~ Rows~ Column~ By 5 ReplaceValues - Parameters v settings [F] Enter Data
*
‘,Ltlose Query Manage Columns Sort Transform Parameters Data Sources New Query
g 2
. f. ") p. » " : ¢ 3 — - S
:)) Jx = Table.Group(Source, {"TypeDay"}, {{"TotalSales", each List.Sum([Sales])}}) ‘7 v ‘LJQJE"W Biﬁtfﬁq:
LA v / -
g . 155 TypeDay ~ | 455 TotalSales - .0,.
o LR 4 PROPERTIES
o 1 Workday 15956.8 *
. . Name
. 2 Weekend 4659.8 ‘e e
H ‘e DayTypeSalesReport
. 3 Holiday 1919.97 e, —
. A roperties
% 4 Donation 6311.83 ‘., All Properties
- *
: ‘e 1)
: ‘e, 4 APPLIED STEPS
-
A Y '0“ Source
3) X DayTypeSales
AddDataTypes
Advanced Editor m} X

let

Source = Excel.CurrentWorkbook(){[Name="DayTypeSales"]}[Content],
DayTypeSales = Table.Group(Source, {“"TypeDay"}, {{"TotalSal
AddDataTypes

in

AddDataTypes

| Notice:

, each List.Sum([Sales]1)}}),
Table.TransformColumnTypes(DayTypeSales,{{"TypeDay", type text}, {"TotalSales", type number}})

1) Query Step Name
(Identifier)

"DayTypeSales” is also
listed in Applied Steps List

+/ No syntax errors have been detected.

2) Formula is also listed in
the Formula Bar
Expressions
e An expression is any M Code that results in a value.
e Some examples of expressions:
o A function, like:
= =Table.Group(Source, {"TypeDay"}, {{"TotalSales", each List.Sum([Sales])}}).
o Alist, like: ={1,2,3}.
o A number and math operator, like: =43 + 7.
o A query step within a let expression, like:
= DayTypeSales = Table.Group(Source, {"TypeDay"}, {{"TotalSales", each List.Sum([Sales])}}),
o Afull let expression, as shown in the above picture.
Identifiers

An identifier is used to refer to an expression (value).
o

If the identifier has a space, you must distinguish it from text by recording it with a leading # sign and
place identifier in quotes, such as: #"ldentifier Name".
o

If there is no space, you record the identifier as: IdentifierName.

Page 8 of 18

e Generalized Identifier are identifiers that allow spaces without the # sign and quotes.
o Generalized Identifiers are allowed in either:

1. The name of a Field in a Record Literal like: [Boom Product = "Quad", Sales = 43]
or

2. The name of a Field in a Field Access Operator like: [Boom Product].
Keywords

e Reserved words that have an assigned meaning and not be used as identifiers for expressions.
o Here are some of the Keywords:

and as each else error false if in is let meta not otherwise or section shared then true try type
#binary #date #datetime #datetimezone #duration #infinity #nan #sections #shared #table #time

Operators and Punctuators

e There are several kinds of operators and punctuators.

e QOperators are used in expressions to describe operations involving one or more operands. For example, the

expression a + b uses the + operator to add the two operands a and b.

e Punctuators are for grouping and separating. For Example { } for grouping items in a list: {1, 2, 3}.
e Examples:

 izc<<=>>xor-t/e()[1{}@12=

Online article about operators; https://learn.microsoft.com/en-us/powerquery-m/operators

Standard Library

e Standard Library is a list of built-in Functions and constants that deliver values.

e The Power Query Excel Standard Library has 837 items and the Power Bl Desktop Power Query Standard Library
has 1032 items (many more data connectors)

e Four examples of Standard Library:
o Excel.CurrentWorkbook() function.
o Number.Round() function.
o Number.E or Number.Pl (delivers the number e or pi).

M Code Tips: #shared, Tab, Linefeed, Return, Lists of Numbers & Letters and Joining Lists, Records & Tables

e If you type #shared into power Query Editor Formula Bar, you get a full list of all elements in Standard Library. If

you convert to a Table, you can search the list.
e Carriage-return, linefeed, or tab character in a text literal, the #(cr), #(If), and #(tab).
e If you type the list: {1.. 43}, you get a list of numbers 1 to 43.
e If youtype {"a".."z"} you get a lower case alphabet.
e You can join two lists with Join Operator, like: {1,3}&{7,43} ={1,3,7,43}
e You can join two records with Join Operator, like: [A=3]&[B=43] = [A=3, B=43]
e You can append tables using the Join Operator, like: Table01&Table02, as shown here:

Table01: Table02: loin Operator To Append Tables:

m m fr || = Teb1e@1 & Tabled2

A 38 Q 43 . 135 P s ~]9%5 S M

F 37 |A®9 |1 @ &
2 A 19
3 A 38
4 F 57

Page 9 of 18

https://learn.microsoft.com/en-us/powerquery-m/operators

Let expression

e et expression allows you to define variables (steps) and use them throughout the let expression to define a final
value. let expressions can be used in any M Code, but is most often used to define a new query.
e The rules for a let expression are:
1. Start the let expression with lower case let.
2. Each variable, or step, starts with an identifier, then an equal sign, then an expression.
3. Variables are usually used in subsequent steps, can be used anywhere throughout the let expression,
but cannot be used outside the let expression.
4. Each variable is followed by a comma.
The last query step does not end with a comma.
6. End the let expression with lower case in followed by the identifier for the final value to be delivered by
the new query. The result of the query is almost always the identifier of the last query step.
e Visual summary of let rules:

i

let expression structure:

let
VariableNamel = M Code,
#" Variable Name 2" = M Code,
VariableName3 = M Code
in
Output

*Qutput is usually the last variable name, but can be
any variable name, query name or expression

e A new query created with the Power Query tool uses a let expression:
1. Inaquery, alet expression is designed to combine all query steps to deliver a final value.
2. The query name is the identifier for the let expression. This identifier can be used throughout the
workbook.
3. Example of a new query that uses let to deliver a Sales By Day Type Report:

i3l Advanced Editor O X

DayTypeSalesReport

let
Source = Excel.CurrentbWorkbook(){[Name="DayTypeSales"]}[Content],
DayTypeSales = Table.Group(Source, {"TypeDay"}, {{"TotalSales", each List.Sum([Sales])}}),
AddDataTypes = Table.TransformColumnTypes(DayTypeSales,{{"TypeDay", type text}, {"TotalSales", type number}})

AddDataTypes

Page 10 of 18

e You can use the let expression anywhere, here is an example of a let expression that is being used inside the
Table.AddColumn function:

il Advanced Editor O

fDiscountedSales

Display Options ~ @

let
Source = fSales,
GetDiscountByCustomFunction = Table.AddColumn(Source, “Discount-CustomFunction”, each

List.Last(Table.SelectRows(dDiscount, (IT) => IT[Sales] <= [Sales])[Discount])),
GetDiscountByLetExpression = Table.AddColumn(GetDiscountByCustomFunction, "Discount-LetExpression™, each

let expression used inside — 1let Szles = [Sales]
Table.AddColumn function in
List.Last(Table.SelectRows(dDiscount, each [Sales] <= Sales)[Discount]))
in
GetDiscountByLetExpression

+/ No syntax errors have been detected.

e You can add notes to M Code with the following syntax:
o Start the note with two forward slashes, like //, followed by written note (before a hard return).
o If you have multiple lines, start at the first line with forward slash and an asterisk, /*, followed by as
many lines (hard returns) as you want, and then end with asterisk and forward slash, */.
o Example is shown on next page:

il Advanced Editor a X

EffectiveRate

let

EffectiveRate = (APR, Periods) => Number.Power(1+APR/Periods,Periods)-1

// Effective Rate based on APR (Annual Percentage Rate) and number of periods per years. It tells you
what the single period rate would be for the year when there are more periods in @ year than one.

/%

APR = Annual Rate Period Year

PeriodsPerYear = Compounding Periods Per Year

*/

in
EffectiveRate

+/ No syntax errors have been detected.

Page 11 of 18

M Code Lookup

e Note: M Code is "base zero", which means: Row 1=0, Row 2 =1, Row 3 =2, and so on...

e M Code Lookup is similar to lookup use the Excel Worksheet function INDEX because INDEX can lookup value
from a table based on a row index number and column index number, Like:

INDEX(Array, Index Number, Column Number)

e Two Types of M Code Lookup:
1. Row Index Lookup

M Code Syntax:

Table { Row Index Number }[Field Name]
This method uses a hard coded row number to determine the row position of the lookup. The
row position does not change when the sort or content of the column changes.
This method uses a hard coded row index number in curly brackets (called positional index
operator) and a field name in square brackets (called a field access operator) to get a value
from a table at the intersection of the row number and designated column.
Examples:

e Source{0}[Content] to get the first item from the Content field in the Source table.

e Source{0} to get the first record from the Source table.

e Source[Content] to get the Content field from the Source table as a list.

e Source[[Content]] to get the Content field from the Source table as a field.

o {43,86}{0} = 43 (get the first item from the list).

o {43,86}{2} = error (error because there is not a third item).

o {43,86}{2}? = null (? is Optional Operator which avoids error and delivers a null when a

match is not made)

2. Key Match Lookup:

M Code Syntax:

Table{[Field Name = LookupValue]}[Field Name]

This method uses an exact match lookup (called key match lookup) to dynamically determine
the row position based on a lookup value in a specified column. The row position changes when
the sort or content of the column changes. You use this type of lookup when you have a field
that contains a unique list, or the field is the primary key in the table.

This method uses a key match logical test inside square brackets (called lookup operator) inside
the positional index operator to dynamically determine the row position of the lookup. The field
name in the field access operator determines the column position. Then the intersecting value is
retrieved from the table.

Examples:

e Source{[Product="Sunshine”]}[Content] to get the item in the Content field that
corresponds to the row position of the Sunshine item in the Product field.

e Source{[Product="Sunshine”]} to get the record in the Source table where the item in
the Product field is equal to Sunshine. There are no duplicates in the Product field and
so it works.

o Source{[Product="Quad”]} yields the error: “The key matched more than one row in the
table” because there was more than one “Quad” in the Product field.

e Source{[Product="Aspen”]} yields the error: “The key didn't match any rows in the
table” because there were no Aspen items in Product field.

e Pictorial Summaries of M Code Lookup on next page:

Page 12 of 18

1) Row Index Lookup formula has this structure:

=Table { Row Index Number } [Field Name]

v v

{}=Row Positional [1=Field Access
Index Operator Operator

2) Key Match Lookup formula has this structure:

=Table { [Field Name = Lookup Value] } [Field Name]

v

{ }=Row Positional [1=Field Access
Index Operator Operator

[1= Lookup Operator when used inside of { }

1) Lookup Record in table (Lookup Row):
=Table { Row Index Number }

=Table { [Field Name = Lookup Value] }
2) Lookup List from a Field in a table (Lookup Column):
=Table [Field Name]

3) Lookup Field from table (Lookup Column):
=Table [[Field Name]]

4) Lookup Fields from table:
=Table [[Field Name], [Field Name2]]

Note:
Relational Algebra & Database Theory:

Projection (r, pi)= pick a column (attribute) from a table (relation)
Selection (o, sigma) = select a row (tuple) from a table (relation)

Two types of Power Query Exact Match Two-Way Lookup:

1) Row Index Lookup = not dynamic because it always gets the first row
= Excel.CurrentWorkbook() { 0 } [Content]

i

[1 =Field Access Operator

{ } = Row Positional Index Operator

Excel.CurrentWorkbook() = Table with Content and Name fields

2) Key Match Lookup = dynamic because it always gets the row with the table name "dSalesDiscount"

= Excel.CurrentWorkbook() { [Name="dSalesDiscount"] } [Content] - i cieliia o
= Field Access Operator

[1= Lookup Operator when used inside of { }
{ } = Row Positional Index Operator

Excel.CurrentWorkbook() = Table with Content and Name fields

Page 13 of 18

Primary Keys

Primary Keys for Power Query Tables are nearly invisible in Power Query. And yet they play a significant role in
doing Lookup in Power Query and for some calculations such as Group By Aggregate.
There is no way to see the Primary Keys in the User Interface.
You can determine if a Table has a Primary key by using the Table.Keys function, as shown in below example:
Power Query will define a Primary Key in a Table in these situations:
o If you use the Remove Duplicates feature, i.e., the Table.Distinct function.
o If you are connected to a database like an SQL database and a Primary Key has been defined in a table
that you import.
o If you use Table.AddKey function to add a primary key to a table.
o When you use Excel.CurrentWorkbook() function to import Excel Tables from the current workbook, the
table of objects that the function creates, adds a primary key to the object name field names “Name”.
The main area in Power Query where a primary key comes into play is with the Drill Down feature.
o If you Drill Down on a Primary Key, Key Match Lookup is preformed, like:

= Excel.CurrentWorkbook(){[Name=""fTransactions""]}[Content]"
o If you Drill Down on a non-Primary Key, Row Index Lookup is preformed, like:

= Excel.CurrentWorkbook(){0}[Content]"

Primary Key Example:

1)

1)

1) If you Drill Down on Aspen in Products Field when there is no Primary Key, Row Index Lookup is performed:

- W% Prosucts e 2)

sty ,ﬁ = Source{1}[Products]

Aspen

2) Check For Primary Key. If there is no Primary Key an empty list is returned:

Jx = Table.Keys(Source)

List

3) You can add a Primary Key to a table with Table.AddKeys function:

Jx = Table.AddKey(Source,{"Products"},true)

). 455 Products -

4) Now if you Drill Down, Key Match Lookup is perfomred:

« Toble,AddCey(Source, {"Prodects™}, true 2)

. £ Procuns

2 Q; fx = Customl{[Products="Aspen"]}[Products]

Aspen

Page 14 of 18

Custom Functions

e An M Code Custom Function is a user-created function that defines the variables and the mapping for those

variables to deliver a value.
e Custom functions can be created in any bit of M Code, but are most often created in three places:

1. Inanew query as a re-usable function (in a let expression that delivers a custom function value that can

be used throughout the workbook).
2. Infunction arguments that require functions
3. Asastepinalet expression
e Syntactical rules for defining a Custom Function are:

Type variables (function inputs) separated by commas in parentheses.
Type the go to operator: => (Equal, Greater Than).
Type a formula that uses zero or more of the variables.

e Two Examples:
o Toaddtheinputsxandy:
(x,y) => x+y
o Calculate the effective rate based on the inputs APR and Periods:
(APR, Periods) => Number.Power(1+APR/Periods,Periods)-1
Example of a Custom Function in a Custom Column that helps to perform approximate match lookup:

JX each List.Last(
Table.SelectRows(
dDiscount,
Custom Function in second argument — (IT) => IT[Sales] <= [Sales]
of Tahle.SelectRows function)
. Date ~ | 1.2 Sales ~ | 1.2 Discount-CustomFunction -

1 1/20/23 3913.46 0.075

Example of a let expression in a Custom Column that helps to perform approximate match lookup:

fx = Table.AddColumn(GetDiscountByCustomFunction, "Discount-LetExpression”, each A

let Sales = [Sales]
in

List.Last(Table.SelectRows(dDiscount, each [Sales] <= Sales)[Discount]), type number)

v | 1.2 Sales ~ | 1.2 Discount-CustomFunction |~ | 1.2 Discount-LetExpression v
1/20/23 381346 0.075 0.075
1/20/23 774.61 0.025 0.025
1/20/23 2088.31 0.05 0.05
1/20/23 251581 0.075 0.075
1/20/23 473.81 0 0

Page 15 of 18

Example of a Re-usable Custom Function created in the Advanced Editor that calculates the effective rate:

il Advanced Editor O X

EffectiveRate

let

Display Options ~ 0

EffectiveRate = (APR, Periods) => Number.Power(1+APR/Periods,Periods)-1 &

in n

EffectiveRate

You can define data types for your Custom Function like this:

il Advanced Editor pefined number data Defined number data
type for APR variable type for Periods variable

Eﬁe Ct | Ve R a te Defined numher data type for

the output of the function

let /

EffectiveRate = (APR as number, Periods as number) as number => Number.Power(1+APR/Periods,Periods)

in
EffectiveRate

You can add notes to your Custom Function:
1. Use two forward slashes, like //, to add a single line with notes (one hard return)
2. When you have multiple lines (multiple hard returns) use /* to start and then */ to close.
3. Examples below:

i3l Advanced Editor O X

EffectiveRate

let
EffectiveRate = (APR, Periods) => Number.Power(1+APR/Periods,Periods)-1
// Effective Rate based on APR (Annual Percentage Rate) and number of periods per years. It tells you
what the single period rate would be for the year when there are more periods in a year than one.

/%
APR = Annual Rate Period Year

PeriodsPerYear = Compounding Periods Per Year
7

in
EffectiveRate

+/ No syntax errors have been detected.

Page 16 of 18

Four Examples of an Effective Rate Custom Function:

Uses each keyword ——

2
Invokes Universal ———

Query Function

Invokes function from
above fguery step "-..___“
3

Invokes function
from ahove query 4
step in the Custom
Column dialog hox

in

ﬂ Advanced Editor

FVTable

Source = Excel.Currenthorkbook(){[Name="FyTable"]}[Content],

AddDataTypes = Table.TransformColumnTypes(Source,{{"APR", type number}, {"Years", Inted.Type}, {"PeriodsPer¥ear”, Inted.Type},
{"Invest"”, Inted.Type}l}),

EReach = Table.AddColumn(AddDataTypes, "EReach”™, each Number.Power(l+[APR]/[PeriodsPerYear], [PeriodsPerYear])-1, type number),

ERUniverzalFx = Table.AddColumn(EReach, "ERUniversalFx", each EffectiveRate([APR], [PeriodsPer¥ear]), type number),

/f Effective Rate Math Formula: (1+i/n)*n)
ERQueryFx = (i as number,n &s number) as number =» Number.Power(l+i/n,n)-1, «— Defined GCustom Function as query step

ERInvokeQueryFx = Table.AddColumni{ERUniversalFx,"ERInvokeQueryFx™, each ERQueryFx{[APR],[PeriodsPer¥ear]), type number),
ERInvaokeQueryFxByCC = Table.AddColumn{ERInvakeQueryFx, "ERQueryFxByCC™, each ERQueryFx([APR],[PeriodsPer¥ear]), type number)

ERInvokeQueryFxByCC

Page 17 of 18

each and underscore

e each = syntactical shorthand for defining an unnamed function taking a single untyped variable named
underscore _ .

e You can use each shorthand anywhere a function can be declared.

e each is often used to pass a function to an argument in another function, like Table.AddColumn.

e each can be thought of as "allowing you to make a calculation in each row of a table or list.

e The Underscore (_) can be thought of as extracting everything from the row the function is working in.

e Examples of equivalent Custom Functions with different syntax:

1. =Table.SelectRows(Source, each [TypeDay] = "Workday")
2. =Table.SelectRows(Source, (_) => [TypeDay] = "Workday")

3. =Table.SelectRows(Source, (x) => x[TypeDay] = "Workday")
e Examples of equivalent Custom Functions with different syntax to extract a record from a table in a Custom
Column:

1. =Table.AddColumn(CustomFunction, "Custom", each)
2. =Table.AddColumn(CustomFunction, "Custom", (_)=>)
3. =Table.AddColumn(CustomFunction, "Custom", (Record) => Record)

Here is picture of advanced editor with above examples of the different syntax available for Custom Functions:

a Advanced Editor

EachAndUnderScore

let
Source = DayTypeSales,

// Next Three Steps Filter Table, each using different syntax:

FunctionWithEach = Table.SelectRows(Source, each [TypeDay] = "Workday"),
FunctionWithUnderScore = Table.SelectRows(Source, (_) => _[TypeDay] = "Workday"),
CustomFunction = Table.SelectRows(Source, (x) => x[TypeDay] = "Workday"),

// Next Three Steps extract a record in each row of a Custom Column, each using different syntax:
RecordWitheachAndUnderscore = Table.AddColumn{CustomFunction, "Custom", each _),

RecordWithWhatEachAndUnderscoreReplce = Table.AddColumn(CustomFunction, “Custom™, (_) => _),
RecordWithCustomFunction = Table.AddColumn{CustomFunction, "Custom”, (Record) => Record)

in
RecordWithCustomFunction

Page 18 of 18

